摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
A printing plate has a substrate and a heat decomposable polymer layer arranged adjacent to the substrate, the decomposable polymer having defined regions within the polymer layer to form a printing pattern. The printing plate may be used in a printing system. The printing plate is formed in a process by providing a substrate, coating the substrate with a heat decomposable polymer to form a plate, and forming a printing pattern in the heat decomposable polymer by selectively decomposing regions of the heat decomposable polymer.
摘要:
A data transmission interconnect assembly capable of transmission speeds in excess of 40 Gbps in which, for example, a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring interface members are formed on the contact structure pressed against the cables to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press the contact structure, having the microspring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
摘要:
Scanning probe systems, which include scanning probe microscopes (SPMs), atomic force microscope (AFMs), or profilometers, are disclosed that use cantilevered spring (e.g., stressy metal) probes formed on transparent substrates. When released, a free end bends away from the substrate to form the cantilevered spring probe, which has an in-plane or out-of-plane tip at its free end. The spring probe is mounted in a scanning probe system and is used to scan or otherwise probe a substrate surface. The probes are used for topography, electrical, optical and thermal measurements.
摘要:
Scanning probe systems, which include scanning probe microscopes (SPMs) are disclosed that include cantilevered spring (e.g., stressy metal) probes and actuation/position sensing electrodes formed on a substrate. The actuation electrodes are used to position the spring probe relative to the substrate using electrostatic, magnetic, acoustic, or piezoelectric arrangements. An actuation signal source is switched between full on and off states to facilitate “ON/OFF” probe actuation in which the spring probe is either fully retracted against the substrate or deployed for scan operations. The position sensing electrodes are used to sense the deflected position of the spring probe relative to the substrate using resistive, magnetic, or piezoresistive arrangements. Spring probe arrays are disclosed that include multiple spring probes arranged on a single substrate. Each spring probe of the array includes a separate actuation electrode that is controlled using “ON/OFF” or tapping probe actuation, and may include a separate position sensing electrode.
摘要:
A xerographic micro-assembler system, method and apparatus that includes a sorting unit that is adapted to receive a plurality of micro-objects. The micro-objects can also be sorted and oriented on the sorting unit and then transferred to a substrate. The system, method and apparatus can also include a device for detecting errors in at least one of the micro-objects on the sorting unit and a protection means for preventing an improper micro-object from being transferred to the substrate. The system, method and apparatus can also include an organized micro-object feeder assembly that can transfer at least one of a plurality of micro-objects to the sorting unit or directly to the substrate.
摘要:
An interposer including stress-engineered nonplanar microsprings may provide interconnection of bonding pads of electronic structures disposed above and below the interposer. The lateral offset between an anchor portion of a microspring disposed for contact at a bottom surface of the interposer and the tip of the microspring located in a free portion of the microspring for contact and deflection over a top surface of the interposer permits the interconnection of devices having different bonding pad pitches. Microspring contacts at the free portion permit temporary interconnection of devices, while solder applied over the free portion permit permanent connection of devices to the interposer.
摘要:
At least one microspring has applied thereover a laminate structure to provide: mechanical protection during handling and wafer processing, a spring spacer layer, strengthening of the anchor between spring and substrate, provision of a gap stop during spring deflection, and moisture and contaminant protection. A fully-formed laminate structure may be applied over the microspring structure or a partly-formed laminate structure may be applied over the microspring structure then cured or hardened. The tip portion of the microspring may protrude through the laminate structure and be exposed for contact or may be buried within the contact structure. The laminate structure may remain in place in the final microspring structure or be removed in whole or in part. The laminate structure may be photolithographically patternable material, patterned and etched to remove some or all of the structure, forming for example additional structural elements such as a gap stop for the microspring.
摘要:
An interposer including stress-engineered nonplanar microsprings may provide interconnection of bonding pads of electronic structures disposed above and below the interposer. The lateral offset between an anchor portion of a microspring disposed for contact at a bottom surface of the interposer and the tip of the microspring located in a free portion of the microspring for contact and deflection over a top surface of the interposer permits the interconnection of devices having different bonding pad pitches. Microspring contacts at the free portion permit temporary interconnection of devices, while solder applied over the free portion permit permanent connection of devices to the interposer.