Abstract:
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate comprising an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.
Abstract:
A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filled with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
After formation of a gate structure and a gate spacer, portions of an insulator layer underlying a semiconductor fin are etched to physically expose semiconductor surfaces of an underlying semiconductor material layer from underneath a source region and a drain region. Each of the extended source region and the extended drain region includes an anchored single crystalline semiconductor material portion that is in epitaxial alignment to the single crystalline semiconductor structure of the underlying semiconductor material layer and laterally applying a stress to the semiconductor fin. Because each anchored single crystalline semiconductor material portion is in epitaxial alignment with the underlying semiconductor material layer, the channel of the fin field effect transistor is effectively stressed along the lengthwise direction of the semiconductor fin.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate, and a gate overlying the semiconductor fins. The gate has a tapered outer surface. A first pair of sidewall spacers is formed adjacent the gate an exposed tapered outer surface is also defined. Portions of the gate are removed at the exposed tapered outer surface to define a recess. A second pair of sidewall spacers is formed covering the first pair of sidewall spacers and the recess. Source/drain regions are formed on the semiconductor fins.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
Abstract:
One illustrative method disclosed includes selectively forming sacrificial conductive source/drain cap structures on and in contact with first and second source/drain contact structures positioned on opposite sides of a gate of a transistor and removing and replacing the spaced-apart sacrificial conductive source/drain cap structures with first and second separate, laterally spaced-apart insulating source/drain cap structures that are positioned on the first and second source/drain contact structures. The method also includes forming a gate contact opening that extends through a space between the insulating source/drain cap structures and through the gate cap so as to expose a portion of the gate structure and forming a conductive gate contact structure (CB) that is conductively coupled to the gate structure.