Abstract:
An electronic device includes a first substrate including a first exposed conductor and a second exposed conductor. The electronic device also includes a second substrate and a conductive material that includes a first portion that contacts the first exposed conductor and a second portion that contacts the second exposed conductor. The electronic device further includes a first substrate structure that electrically insulates the first portion of the conductive material from the second portion of the conductive material. A process for forming an electronic device includes depositing a liquid adhesive over a first substrate. The process further includes contacting the liquid adhesive with a second substrate near a first edge of the second substrate. The process still further includes increasing the contact area between the liquid adhesive and second substrate as the second edge of the second substrate is moved closer to the first substrate.
Abstract:
A circuit for an electronic device includes a select unit, a data holder unit, an electronic component, a transistor, and a switch. The control terminal of the switch is coupled to a first select line, the first terminal of the switch is connected to a first electrode of the electronic component, and the second terminal of the switch is connected to a reference voltage line. A method of using an electronic component that includes such a circuit includes writing data to a pixel and driving the electronic component. The select unit and the switch are configured to turn on at substantially a same time, and the select unit and the switch are configured to turn off at substantially a same time during writing and driving, respectively.
Abstract:
In one embodiment, a circuit for driving an electronic component includes a first signal line and a first switch. The first switch is connected to the first signal line and is coupled to a first terminal of the electronic component. The first switch is configured to allow a state where the first signal line electrically floats. In another embodiment, a circuit for driving an electronic component includes a first switch and a second switch. In yet another embodiment, a method for using any or all of the circuits includes electrically floating a second terminal of the electronic component, a source/drain region of a field-effect transistor, or both. In yet a further embodiment, during a first time period having a first switch at a first setting and a second switch at a second setting. During a second time period, changing the first switch, the second switch, or both to different setting(s).
Abstract:
The invention provides methods for the production of full-color, subpixellated organic electroluminescent (EL) devices. Substrates used in the methods of the invention for production of EL devices comprise wells wherein the walls of the wells do not require surface treatment prior to deposition of electroluminescent material. Also provided are EL devices produced by the methods described herein.
Abstract:
The present invention is generally directed to a hole transport polymer comprising a polymeric backbone having linked thereto a plurality of substituents comprising fused aromatic ring groups, with the proviso that the polymer does not contain groups selected from triarylamines and carbazole groups. It further relates to devices that are made with the polymer.
Abstract:
Organic diode detectors with switchable photosensitivity are achieved using organic photo layers in the photodiodes and a detector circuit which applies a reverse or forward bias voltage across the diodes. The diodes can be arranged in matrices which function as high performance, two-dimensional image sensors. These image sensors can achieve full color or selected color detection capability.
Abstract:
Image sensors with monochromatic or multi-color response made from organic semiconductors are disclosed. The image sensors are comprised of image sensing elements (pixels) each of which comprises a thin layer (or multiple layers) of organic semiconductor(s) sandwiched between conductive electrodes. These image sensors can be integrated or hybridized with electronic or optical devices on the same substrate or on different substrates. The electrical output signals from the image sensors resulting from the input image are probed by a circuit connected to the electrodes. The spectral response of the image sensing, elements can be modified and adjusted to desired spectral profiles through material selection, through device thickness adjustment and/or through optical filtering. Several approaches for achieving red, green, and blue full-color detection are disclosed. Similar approaches can be used for multiple-band detection (wavelength multiplexing) in desired response profiles and in other selected spectral ranges.
Abstract:
A recombinant plasmid and an RNA sequence expressed by said plasmid are described. The RNA sequence hybridizes specifically with human c-fes mRNA.
Abstract:
A method of fabricating a structure including a high mobility backplane and a-Si photodiode imager includes forming a matrix of metal oxide thin film transistors on the surface of a rigid support member, depositing a planarizing layer on the matrix of transistors that is either porous or permissive/diffusive to oxygen at temperatures below approximately 200° C., and fabricating a matrix of passivated a-Si photodiodes over the matrix of transistors and electrically connected one each photodiode to each of the transistors. A continuous path is provided through the planarizing layer from the exterior of the structure to each of the transistors and the structure is annealed at a temperature below 200° C. in an oxygen ambient to move oxygen from the oxygen ambient to an active layer of each of the transistors and repair loss of oxygen damage to the transistors caused by the fabrication of the passivated a-Si photodiodes.
Abstract:
A method including providing a substrate with a gate, a layer of gate insulator material adjacent the gate, and a layer of metal oxide semiconductor material positioned on the gate insulator opposite the gate, forming a selectively patterned etch stop passivation layer and heating at elevated temperature in an oxygen-containing or nitrogen-containing or inert ambience to selectively increase the carrier concentration in regions of the metal oxide semiconductor not covered by the etch stop layer, on which overlying and spaced apart source/drain metals are formed. Subsequently heating the transistor in an oxygen-containing or nitrogen-containing or inert ambience to further improve the source/drain contacts and adjust the threshold voltage to a desired level. Providing additional passivation layer(s) on top of the transistor with electric insulation and barrier property to moisture and chemicals in the surrounding environment.