摘要:
A method for selectively arranging ferritin in a specified inorganic material part formed on a substrate is provided. The method for arranging ferritin of the present invention is characterized in that ferritin is selectively arranged on a part including titanium or silicon nitride (SiN) in an efficient manner by adding a nonionic surface active agent. Also, selective arrangement capability of ferritin can be markedly improved by modifying the N-terminus of ferritin with a certain peptide.
摘要:
The method of the production of a nanoparticle of the present invention includes a step of forming a nanoparticle including a compound of ametal ion in a cavity part of aprotein, in a solution containing the protein having the cavity part therein, the metal ion, and a carbonate ion and/or a hydrogen carbonate ion. Examples of the aforementioned compound include e.g., a hydroxide. The aforementioned metal ion is preferably any one of a nickel ion (Ni2+), a chromium ion (Cr2+) or a copper ion (Cu2+). According to the aforementioned method, nanoparticles having a uniform particle diameter can be produced.
摘要:
A nucleotide detector 10 includes: metal particles 12 having a size of the order of nanometers (diameter: about 6 nm) placed on a surface of a substrate 11 at high density with high precision (with spaces of about 12 nm between adjacent particles); and single-stranded DNAs (thiol DNAs) 13 having sulfur atoms at ends bonded to the gold particles 12. The thiol DNAs 13 are placed uniformly over the entire substrate 11 at high density with high precision. Therefore, once a fluorescence-labeled single-stranded DNA is hybridized with any of the thiol DNAs 13, high fluorescence intensity is stably obtained. This detector is therefore usable as a high-performance DNA sensor with a high SN ratio.
摘要:
The radiotherapy apparatus in the present invention includes a bed, a radiation irradiating head, head swing mechanisms, a precise inspection unit and a control unit. The bed carries a subject. The radiation irradiating head irradiates a treatment radiation to a treatment field of the subject. The head swing mechanisms, which are coupled to the radiation irradiating head, swings the head of the radiation irradiating head so that the treatment radiation emitted from the radiation irradiating head pursues the motion of the treatment field. The precise inspection unit obtains a diagnosis image containing the treatment field. The control unit controls the positions of the head swing mechanisms so that an irradiation field of the radiation irradiating head pursues the treatment field, based on the diagnosis image, the position of the radiation irradiating head and the state of the swung head. Then, the control unit controls the radiation irradiating head so that the treatment radiation is irradiated from the radiation irradiating head, after the positional control of the head swing mechanisms.
摘要:
A method of the production of a nanoparticle dispersed composite material capable of controlling a particle size and a three dimensional arrangement of the nanoparticles is provided. The method of the production of a nanoparticle dispersed composite material of the present invention includes a step (a) of arranging a plurality of core fine particle-protein complexes having a core fine particle, which comprises an inorganic material, internally included within a protein on the top surface of a substrate, a step (b) of removing the protein, a step (c) of conducting ion implantation from the top surface of the substrate, and a step (d) of forming nanoparticles including the ion implanted by the ion implantation as a raw material, inside of the substrate.
摘要:
Using a gene recombination technique, a glutamic acid and an aspartic acid positioned in a channel of apoferritin are substituted with serine having a small size and no charges. Then, a glutamic acid positioned in a holding portion is substituted with a basic amino acid such as lysine or a neutral amino acid. Furthermore, at least one cysteine is introduced into the holding portion. This prevents a repulsive force due to electrostatic interaction between (AuCl4)− having a negative charge and a negative amino acid from occurring, which facilitates the capture of (AuCl4)− into the channel and the holding portion. The (AuCl4)− captured into the holding portion is subsequently reduced to Au, and thus apoferritin including gold particles can be produced.
摘要:
An object of the present invention is to provide a method of forming fine particles on a substrate in which reoxidization of reduced fine particles is suppressed. Reduced fine particles (FeO fine particles) are formed by embedding metal oxide fine particles (Fe2O3 fine particles) fixed on a p type silicon semiconductor substrate into a silicon oxidized film, and carrying out a heat treatment in a reducing gas atmosphere. Presence of the silicon oxidized film enables suppression of reoxidization of the reduced fine particles (FeO fine particles) due to exposure to the ambient air.
摘要翻译:本发明的目的是提供一种在抑制还原的微粒的再氧化的基板上形成微粒的方法。 通过将固定在p型硅半导体衬底上的金属氧化物微粒(Fe 2 O 3 O 3微粒)嵌入到硅氧化膜中而形成还原的微粒(FeO微粒) ,并在还原气体气氛中进行热处理。 硅氧化膜的存在能够抑制由于暴露于环境空气而导致的还原的微粒(FeO微粒)的再氧化。
摘要:
A radiotherapy apparatus comprising an irradiation head having a linear accelerator and an intra-head waveguide unit whose one end portion is electromagnetically connected to the linear accelerator, a supporting moving mechanism which supports and moves the irradiation head on predetermined first spherical coordinates, a microwave oscillator which generates microwaves to be supplied to the irradiation head, and which is placed in a stationary position, a fixed waveguide unit having one end portion electromagnetically connected to the microwave oscillator, and the other end portion positioned on the supporting moving mechanism, and a moving waveguide unit having one end portion electromagnetically connected to the other end portion of the fixed waveguide unit positioned on the supporting moving mechanism.
摘要:
A semiconductor device as a nonvolatile memory comprises dot elements which are formed out of the semiconductor or conductor fine particles and function as a floating gate. The dot elements are asymmetrically formed to a control gate and may be formed in a sidewall insulating film formed over the side face of the control gate or a select gate. When inclined or stepped portions having level differences are formed in a semiconductor substrate, the dot elements are formed on a specified portion of the inclined or stepped portions.
摘要:
A quantum device is constituted from a two-dimensional array of quantum dots formed from metal atom aggregates contained in metalloprotein complex. The metalloprotein is arranged on the surface of a substrate having an insulation layer with a pitch of the size of the metalloprotein complex. The diameter of the metal atom aggregates used in the quantum device is 7 nm or smaller, and the pitch of the metalloprotein complex is preferably from 11 to 14 nm.