摘要:
Methods and systems are provided for adjusting cylinder valve timings to enable a group of cylinders to operate and combust while another group of cylinders on a second are selectively deactivated. Valve timing may be adjusted to allow flow of air through the inactive cylinders to be reduced, lowering catalyst regeneration requirements upon reactivation. The valve timing may alternatively be adjusted to enable exhaust gas to be recirculated to the active cylinders via the inactive cylinders, providing cooled EGR benefits.
摘要:
Methods and systems are provided for selecting a group of cylinders for selective deactivation, in a variable displacement engine system, based at least on a regeneration state of an exhaust catalyst. The position of one or more valves and throttles may be adjusted based on the selective deactivation to reduce back-flow through the disabled cylinders while also maintaining conditions of a downstream exhaust catalyst. Pre-ignition and knock detection windows and thresholds may also be adjusted based on the deactivation to improve the efficiency of knock and pre-ignition detection.
摘要:
Methods and systems are provided for selecting a group of cylinders for selective deactivation, in a variable displacement engine system, based at least on a regeneration state of an exhaust catalyst. The position of one or more valves and throttles may be adjusted based on the selective deactivation to reduce back-flow through the disabled cylinders while also maintaining conditions of a downstream exhaust catalyst. Pre-ignition and knock detection windows and thresholds may also be adjusted based on the deactivation to improve the efficiency of knock and pre-ignition detection.
摘要:
A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
摘要:
A method and system for fuel vapor control in a hybrid vehicle (HEV). The HEV fuel vapor recovery system includes a fuel tank isolation valve, which is normally closed to isolate storage of refueling from storage of diurnal vapors. The method for fuel vapor control includes selectively actuating the fuel tank isolation valve during interrelated routines for refueling, fuel vapor purging, and emission system leak detection diagnostics to improve regulation of pressure and vacuum the HEV fuel vapor recovery system.
摘要:
Methods and systems are provided for operating a fuel vapor recovery system having a fuel tank isolation valve coupled between a fuel tank and a canister. Fuel vapors are purged from the fuel tank to a canister buffer over a plurality of purge pulses. The pulses are adjusted based on the buffer capacity, a purge flow rate, and a fuel tank pressure to improve control of canister loading and reduce air-to-fuel ratio disturbances.
摘要:
Systems, methods, and computer readable storage media are described in which exhaust gas is routed to a hydrocarbon retaining device during starting, and purged to the engine intake manifold. Various alternative approaches are described for controlling operation and diagnosing degradation. Further, various interrelated configurations are described.
摘要:
Methods for operating a flexible fuel engine with a fuel reformer which reforms a fuel into a gaseous fuel reformate are provided. Operating parameters of the fuel reformer and delivery of reformate to the engine are adjusted based on an alcohol content of the fuel.
摘要:
A system and method for storing and purging fuel vapors for an internal combustion engine comprising a compressor is presented. The system allows the canister to be purged even while the engine is operated at high engine load.
摘要:
Methods and systems are provided for operating an engine including an exhaust treatment system coupled to an engine exhaust, the exhaust treatment system further coupled to an engine intake via an exhaust gas recirculation (EGR) system. One example method comprises, operating in a first mode including routing exhaust gas through the exhaust treatment system to an exhaust tailpipe; operating in a second mode including routing exhaust gas through the exhaust treatment system to an engine intake via the EGR system, and operating in a third mode including routing exhaust gas to an engine intake through the EGR system while bypassing the exhaust treatment system.