摘要:
A system for electrochemical mechanical polishing of a semiconductor wafer. The system includes a wafer carrier for holding the wafer, an electropolishing pad, and a showerhead for applying fluid towards the electrode. The electropolishing pad includes an electrode and a pad material layer attached to the electrode. The pad material layer includes openings to permit processing solution to wet both a conductive surface of the wafer and a surface of the electrode.
摘要:
Abstract of the DisclosureA system for electrochemical mechanical polishing of a conductive surface of a wafer is provided. The system includes a wafer holder to hold the wafer and a belt pad disposed proximate to the wafer to polish the conductive surface. Application of a potential difference between conductive surface and an electrode and establishing relative motion between the belt pad and the conductive surface result in material removal from the conductive surface. Electrical contact to the surface is provided through either contacts embedded in the belt pad or contacts placed adjacent the belt pad.
摘要:
An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
摘要:
The invention provides a process for forming a planar copper structure on a wafer surface in a first module and a second module of a system. During the process, a copper layer is formed on the wafer surface by utilizing an electrochemical deposition process in the first module. After the deposition, the wafer is moved to the second module of the system and an electrochemical mechanical polishing process is applied to planarize the copper layer to a predetermined thickness. The first and second modules can be positioned in a cluster tool. The wafer is subsequently processed by selective copper CMP and selective barrier layer CMP, which are conducted in another cluster tool.
摘要:
The present invention relates to a method for forming a planar conductive surface on a wafer. In one aspect, the present invention uses a no-contact process with electrochemical deposition, followed by a contact process with electrochemical mechanical deposition.
摘要:
The present invention is directed to a method and apparatus for plating a surface of a semiconductor workpiece (wafer, flat panel, magnetic films, etc.) using a liquid conductor that makes contact with the outer surface of the workpiece. The liquid conductor is stored in a reservoir and pump through an inlet channel to the liquid chamber. The liquid conductor is injected into a liquid chamber such that the liquid conductor makes contact with the outer surface of the workpiece. An inflatable tube is also provided to prevent the liquid conductor from reaching the back face of the workpiece. A plating solution can be applied to the front face of the workpiece where a retaining ring/seal further prevents the plating solution and the liquid conductor from making contact with each other. In an alternative embodiment, electrical contacts may be formed using an inflatable tube that has either been coated with a conductive material or contains a conductive object. The inflatable tube further provides uniform contact and pressure along the periphery of the workpiece, which may not necessarily be perfectly flat, because the tube can conform according to the shape of the periphery of the workpiece. Further, the present invention can be used to dissolve/etch a metal layer from the periphery of the workpiece.
摘要:
A system and method for processing, in a single process tool, a surface of a semiconductor workpiece having a barrier layer and a conductor. The single process tool includes a first planarization module, a second planarization module, and an electroless deposition module. The conductor is planarized in the first planarization module until a portion of the barrier layer is exposed. In the second planarization module, the exposed portion of the barrier layer is removed from the surface. The workpiece is then moved to the electroless plating module, where a cap layer is formed on the planarized conductor.
摘要:
A system for optionally depositing or etching a layer of a wafer includes mask plate opposed to the wafer with the mask plate having a plurality of openings that transport a solution to the wafer. An electrode assembly has a first electrode member and a second electrode member having channels that operatively interface a peripheral and center part of the wafer. The channels transport the solution to the mask.
摘要:
The present invention applies an electrochemical etching solution to a material layer, preferably a metal layer, disposed on a workpiece, in the presence of a current. This electrochemical etching solution supplies to the material on the substrate surface the species to form an intermediate compound on the surface that can be more easily mechanically removed as intermediate compound fragments than the material. By removing the intermediate compound fragments, the process allows more efficient use of the supplied current to form another layer of intermediate compound that can also be mechanically removed, rather than using the current to result in another compound on the surface of the material that eventually dissolves into the solution. In another aspect of the invention, such intermediate compound particulates are externally generated and used to mechanically remove the surface layer of the material. Such intermediate particulates do not contaminate, and thus allow for more efficient material removal, as well as plating to occur within the same chamber, if desired.
摘要:
A modified plating solution that can be used to electroplate a high quality conductive material that can be effectively polished and planarized includes (1) a solvent, (2) an ionic species of the conductive material to be deposited, (3) at least one additive to improve electrical and structural properties, and (4) a modifying agent.