摘要:
Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g.
摘要:
Methods are provided of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A silicon-containing gas, an oxygen-containing gas, and a fluent gas are flowed into the substrate processing chamber. The fluent gas has an average molecular weight less than 5 amu. A first high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas to deposit a first portion of the silicon oxide film over the substrate and within the gap with a first deposition process that has simultaneous deposition and sputtering components having relative contributions defined by a first deposition/sputter ratio. A second high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas to deposit a second portion of the silicon oxide film over the substrate and within the gap with a second deposition process that has simultaneous deposition and sputtering components having relative contributions defined by a second deposition/sputter ratio. The second deposition/sputter ratio is less than the first deposition/sputter ratio. Each of the first and second deposition/sputter ratios is defined as a ratio of a sum of a net deposition rate and a blanket sputtering rate to the blanket sputtering rate.
摘要:
Incoming audio from mobile devices can be centrally processed, where a server can filter background noise in real time, such as by using an XOR function. Instead of discarding the filtered noise, however, it can be processed in parallel to dynamically construct an acoustic map of the environment. The acoustic map can be generated from an aggregation of sound data from multiple devices positioned in a geographic environment. The acoustic map can be linked to a configurable set of rules, conditions, and events, which can cause dynamic adjustments to be made to a workforce task management system. For example, employee availability can be assessed using the acoustic map and workforce tasks can be assigned based in part upon this availability.
摘要:
A method of filling a trench is described and includes depositing a dielectric liner with a high ratio of silicon oxide to dielectric liner etch rate in fluorine-containing etch chemistries. Silicon oxide is deposited within the trench and etched to reopen or widen a gap near the top of the trench. The dielectric liner protects the underlying substrate during the etch process so the gap can be made wider. Silicon oxide is deposited within the trench again to substantially fill the trench.
摘要:
A processing chamber is seasoned by providing a flow of season precursors to the processing chamber. A high-density plasma is formed from the season precursors by applying at least 7500 W of source power distributed with greater than 70% of the source power at a top of the processing chamber. A season layer having a thickness of at least 5000 Å is deposited at one point using the high-density plasma. Each of multiple substrates is transferred sequentially into the processing chamber to perform a process that includes etching. The processing chamber is cleaned between sequential transfers of the substrates.
摘要:
A remote plasma process for removing unwanted deposition build-up from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber. In one embodiment, the substrate is transferred out of the substrate processing chamber and a flow of a fluorine-containing etchant gas is introduced into a remote plasma source where reactive species are formed. A continuous flow of the reactive species from the remote plasmas source to the substrate processing chamber is generated while a cycle of high and low pressure clean steps is repeated. During the high pressure clean step, reactive species are flown into the substrate processing chamber while pressure within the substrate processing chamber is maintained between 4-15 Torr. During the low pressure clean step, reactive species are flown into the substrate processing chamber while reducing the pressure of the substrate processing chamber by at least 50 percent of a high pressure reached in the high pressure clean step.
摘要:
The present invention pertains to methods of depositing low wet etch rate silicon nitride films on substrates using high-density plasma chemical vapor deposition techniques at substrate temperatures below 600° C. The method additionally involves the maintenance of a relatively high ratio of nitrogen to silicon in the plasma and a low process pressure.
摘要:
A method for forming a compressive film over a field effect transistor over a substrate is provided. The field effect transistor includes a channel region between a drain and a source within the substrate. The channel region is controlled by a gate electrode. The method includes depositing a diamond-like carbon (DLC) film over the field effect transistor to compress the channel region by generating a plasma of a processing gas including a precursor gas and an additive gas, wherein the precursor substantially includes only C2H2 and the additive gas includes Ar.
摘要:
Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
摘要:
The concentration of various contaminants in a plasma can be monitored during processing of a substrate such as a silicon wafer, in order to prevent an unacceptable amount of contamination from being deposited on the substrate. The radiation emitted from the plasma through a window in the processing chamber during processing can be detected and measured by a tool such as an optical emission spectrograph (OES) and the relative intensity of peaks in the spectrum corresponding to various contaminants can be analyzed in order to determine contaminant concentration. In one embodiment, the concentration of aluminum in a plasma is monitored during a plasma chemical vapor deposition (CVD) process in order to ensure that the amount of aluminum in the produced device is lower than a maximum threshold amount.