摘要:
Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g.
摘要:
A phase shift keyed demodulator includes first and second beam splitters, a first optical path, a second optical path, and a wavelength tuner. The first beam splitter splits an input signal into first and second output signals. The second beam splitter splits each first and second output signal into a transmitted signal and a reflected signal. The first optical path includes an optical path of each transmitted signal from a beam splitting surface to a reflector and back to the beam splitting surface. The second optical path includes an optical path of each reflected signal from the beam splitting surface to a mirror surface and back to the beam splitting surface. A path difference introduces a delay between the transmitted signal and the reflected signal. The wavelength tuner tunes the demodulator to a predetermined central wavelength and introduces a phase shift between first and second transmitted signals.
摘要:
The invention relates to a novel kind of chitosan derivative, specifically to quaternized carboxymethyl chitosand derivatives and preparation method. Chitosan with different molecular weight reacts with chloroactic acid give rise to carboxymethyl chitosan. After reaction of Schiff based, deoxidized and quaternized, quaternized carboxymethyl chitosan is obtained. This kind of chitosan derivative have better water-solubility and better antifungal activity, which can used in the fields of medicine and agriculture.
摘要:
A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
摘要:
Methods of filling a gap on a substrate with silicon oxide are described. The methods may include the steps of introducing an organo-silicon precursor and an oxygen precursor to a deposition chamber, reacting the precursors to form a first silicon oxide layer in the gap on the substrate, and etching the first silicon oxide layer to reduce the carbon content in the layer. The methods may also include forming a second silicon oxide layer on the first layer, and etching the second layer to reduce the carbon content in the second layer. The silicon oxide layers are annealed after the gap is filled.
摘要:
A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
A method of operating a substrate processing chamber that includes, prior to a substrate processing operation, flowing a seasoning gas comprising silane and oxygen into said chamber at a flow ratio of greater than or equal to about 1.6:1 oxygen to silane to deposit a silicon oxide film over at least one aluminum nitride nozzle exposed to an interior portion of the chamber. Also, a substrate processing system that includes a housing, a gas delivery system for introducing a seasoning gas into a vacuum chamber, where the gas delivery system comprises one or more aluminum nitride nozzles exposed to the vacuum chamber, a controller and a memory having a program having instructions for controlling the gas delivery system to flow a seasoning gas that has an oxygen to silane ratio greater than or equal to about 1.6:1 to deposit a silicon oxide film on the aluminum nitride nozzles.
摘要:
A method of forming a dielectric layer is described. The method first deposits a silicon-nitrogen-and-hydrogen-containing (polysilazane) layer by radical-component chemical vapor deposition (CVD). The silicon-nitrogen-and-hydrogen-containing layer is formed by combining a radical precursor (excited in a remote plasma) with an unexcited carbon-free silicon precursor. A silicon oxide capping layer may be formed from a portion of the carbon-free silicon-nitrogen-and-hydrogen-containing layer to avoid time-evolution of underlying layer properties prior to conversion into silicon oxide. Alternatively, the silicon oxide capping layer is formed over the silicon-nitrogen-and-hydrogen-containing layer. Either method of formation involves the formation of a local plasma within the substrate processing region.
摘要:
Methods of forming silicon oxide layers are described. The methods include concurrently combining plasma-excited (radical) steam with an unexcited silicon precursor. Nitrogen may be supplied through the plasma-excited route (e.g. by adding ammonia to the steam) and/or by choosing a nitrogen-containing unexcited silicon precursor. The methods result in depositing a silicon-oxygen-and-nitrogen-containing layer on a substrate. The oxygen content of the silicon-oxygen-and-nitrogen-containing layer is then increased to form a silicon oxide layer which may contain little or no nitrogen. The increase in oxygen content may be brought about by annealing the layer in the presence of an oxygen-containing atmosphere and the density of the film may be increased further by raising the temperature even higher in an inert environment.