摘要:
Device leakage due to spacer undercutting is remedied by depositing a BPSG, SA-CVD oxide liner and flowing it into the undercut regions, followed by gap filling with a P-doped HDP oxide layer. Embodiments include depositing a BPSG, SA-CVD oxide liner containing 4 to 6 wt.% boron, at a thickness of 1,000 Å to 1,800 Å, over closely spaced apart non-volatile transistors and heating during or subsequent to deposition to flow the BPSG, SA-CVD oxide liner into the undercut regions of the sidewall spacers of the gate stacks. Gap filling is then completed by depositing the layer of P-doped HDP at a thickness of 6,000 Å to 10,000 Å.
摘要:
A non-volatile memory having a control gate (14) and a sidewall select gate (28) is illustrated. The sidewall select gate (28) is formed in conjunction with a semiconductor doped oxide (20) to form a non-volatile memory cell (7). The semiconductor element used to dope the oxide layer (20) will generally include silicon or germanium. The non-volatile memory cell (7) is programmed by storing electrons in the doped oxide (20), and is erased using band-to-band tunneling.
摘要:
A memory array (25) having a selected memory cell (10) and an unselected memory cell (30) is programmed and read. Each memory cell in the memory array (25) contains an isolation transistor (22) and a floating gate transistor (23). To program the selected memory cell (10), programming voltages are applied to a control gate line (21), a drain line (14), an isolation line (19), and a source line (12). To reduce the effects of the drain disturb problem, a gate terminal (32) of the unselected memory cell (30) is held at a positive voltage. To read selected memory cell (10), a read voltage is applied to an isolation gate line (31) of unselected memory cell (30) which insures that the unselected memory cell (30) does not conduct or contribute to leakage current and power consumption during the read operation.
摘要:
A dual node memory device and methods for fabricating the device are provided. In one embodiment the method comprises forming a layered structure with an insulator layer, a charge storage layer, a buffer layer, and a sacrificial layer on a semiconductor substrate. The layers are patterned to form two spaced apart stacks and an exposed substrate portion between the stacks. A gate insulator and a gate electrode are formed on the exposed substrate, and the sacrificial layer and buffer layer are removed. An additional insulator layer is deposited overlying the charge storage layer to form insulator-storage layer-insulator memory storage areas on each side of the gate electrode. Sidewall spacers are formed at the sidewalls of the gate electrode overlying the storage areas. Bit lines are formed in the substrate spaced apart from the gate electrode, and a word line is formed that contacts the gate electrode and the sidewall spacers.
摘要:
Systems, methods, and devices that facilitate applying a predefined negative gate voltage to wordlines adjacent to a selected wordline associated with a memory cell selected during a read or verify operation to facilitate reducing adjacent wordline disturb are presented. A memory component can comprise an optimized operation component that can apply a predefined negative gate voltage to wordlines adjacent to a selected wordline associated with a memory cell selected for a read or verify operation, based at least in part on predefined operation criteria, to facilitate reducing adjacent wordline disturb in the selected memory cell to facilitate reducing a shift in the voltage threshold and maintain a desired operation window. The optimized operation component optionally can include an evaluator component that can facilitate determining whether a negative gate voltage applied to adjacent wordlines is to be adjusted to facilitate reducing adjacent wordline disturb below a predetermined threshold amount.
摘要:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
摘要:
A method for performing shallow trench isolation during semiconductor fabrication that improves trench corner rounding is disclosed. The method includes etching trenches into a silicon substrate between active regions, and performing a double liner oxidation process on the trenches. The method further includes performing a double sacrificial oxidation process on the active regions, wherein corners of the trenches are substantially rounded by the four oxidation processes.
摘要:
A method for forming a memory device is provided. A nitride layer is formed over a substrate. The nitride layer and the substrate are etched to form a trench. The nitride layer is trimmed on opposite sides of the trench to widen the trench within the nitride layer. The trench is filled with an oxide material. The nitride layer is stripped from the memory device, forming a mesa above the trench.
摘要:
A method and apparatus for coupling to a source line is disclosed. A semiconductor structure having an array of memory cells arranged in rows and columns is described. The array of memory cells includes a source region that is implanted with n-type dopants isolated between an adjoining pair of the non-intersecting STI regions and isolated from a drain region during the implantation. A source contact is located along a row of drain contacts that are coupled to drain regions of a row of memory cells and the source contact is coupled to the source region for providing electrical coupling with a plurality of source lines. The isolating of the implanted source region from the drain region during the implanting enables coupling of the source contact to the source lines while maintaining the n-type dopants between the STI regions and avoiding lateral diffusion to a bit-line.
摘要:
According to one exemplary embodiment, a method for fabricating a floating gate memory cell on substrate comprises a step of forming a spacer adjacent to a source sidewall of a stacked gate structure, where the stacked gate structure is situated over a channel region in substrate. The method further comprises forming a high energy implant doped region adjacent to the spacer in the source region of substrate. The method further comprises forming a recess in a source region of the substrate, where the recess has a sidewall, a bottom, and a depth, and where the sidewall of the recess is situated adjacent to a source of the floating gate memory cell. According to this exemplary embodiment, the spacer causes the source to have a reduced lateral straggle and diffusion in the channel region, which causes a reduction in drain induced barrier lowering (DIBL) in the floating gate memory cell.