摘要:
A method of manufacturing a nitride semiconductor device is disclosed. The method includes forming a gallium nitride (GaN) epitaxial layer on a first support substrate, forming a second support substrate on the GaN epitaxial layer, forming a passivation layer on a surface of the other region except for the first support substrate, etching the first support substrate by using the passivation layer as a mask, and removing the passivation layer and thereby exposing the second support substrate and the GaN epitaxial layer.
摘要:
A method for manufacturing a gallium nitride (GaN) wafer is provided. In the method for manufacturing the GaN wafer according to an embodiment, an etch stop layer is formed on a substrate, and a first GaN layer is formed on the etch stop layer. A portion of the first GaN layer is etched with a silane gas, and a second GaN layer is formed on the etched first GaN layer. A third GaN layer is formed on the second GaN layer.
摘要:
An active magnetic antenna with a ferrite core having a winding is provided, forming a frame magnetic antenna which is connected with a low-noise transistor, to amplify a signal of the frame magnetic antenna. A base of the transistor is connected directly to one contact of the winding, and a second contact of the winding is capable of shifting a voltage of the base of the transistor. The impedance of the frame magnetic antenna is adjusted as a complex conjugate with an impedance of the base of the transistor of the low-noise amplifier, and the winding eliminates its own resonances.
摘要:
A method of monitoring a semiconductor process is provided. The method includes preparing a process chamber including first and second electrodes spaced apart from and facing each other, and connecting the first electrode to a ground and connecting the second electrode to a radio frequency power source. An impedance in the process chamber is measured using a voltage value and a current value at the second electrode. The consumption amount of consumables in the process chamber is checked using the impedance. Varied process conditions are adjusted within an initial set range.
摘要:
The present invention relates to a compound semiconductor substrate and a method for manufacturing the same. The present invention provides the manufacturing method which coats spherical balls on a substrate, forms a metal layer between the spherical balls, removes the spherical balls to form openings, and grows a compound semiconductor layer from the openings. According to the present invention, the manufacturing method can be simplified and grow a high quality compound semiconductor layer rapidly, simply and inexpensively, as compared with a conventional ELO (Epitaxial Lateral Overgrowth) method or a method for forming a compound semiconductor layer on a metal layer. And, the metal layer serves as one electrode of a light emitting device and a light reflecting film to provide a light emitting device having reduced power consumption and high light emitting efficiency.
摘要:
A linear vibrator is disclosed. The linear vibrator includes a base, a coil unit, which is coupled to the base, a magnet, which is coupled to the coil unit such that the magnet can move relatively, and a plurality of leaf springs, which are interposed between the magnet and the base. Here, the plurality of leaf springs face one another and are coupled to one another Thus, the linear vibrator can increase the range of vibration displacement in a structure and increase the amount of vibration in the linear vibrator. Also, even though the linear vibrator becomes thinner, the range of displacement can be increased because the weight is vibrated horizontally.
摘要:
Provided is a method for preparing a compound semiconductor substrate. The method includes coating a plurality of spherical balls on a substrate, growing a compound semiconductor epitaxial layer on the substrate coated with the spherical balls while allowing voids to be formed under the spherical balls, and cooling the substrate on which the compound semiconductor epitaxial layer is grown so that the substrate and the compound semiconductor epitaxial layer are self-separated along the voids. The spherical ball treatment can reduce dislocation generations. In addition, because the substrate and the compound semiconductor epitaxial layer are separated through the self-separation, there is no need for laser lift-off process.
摘要:
A field emission device, a field emission display device, and a method for manufacturing the same are disclosed. The field emission device includes: i) a substrate; ii) an electrode positioned on the substrate; iii) a mask layer positioned on the electrode and including one or more openings; and iv) a plurality of nanostructures positioned on the electrode via the openings and formed to extend radially. The plurality of nanostructures may be applied to emit an electron upon receiving a voltage from the electrode.
摘要:
Provided are methods and systems for monitoring a state of a plasma chamber. In the method, an optical characteristic of plasma generated in a plasma chamber including a window is measured in a predetermined measurement wavelength band. A process status index (PSI) is extracted from the measured optical characteristic. A state of the plasma chamber is evaluated by analyzing the extracted PSI. The optical characteristic of the plasma is measured in the predetermined measurement wavelength band in which a transmittance of light passing through the window is substantially independent of a wavelength of the light.
摘要:
A gray-scale representation method for a plasma display panel, which method includes arranging, in time sequence, a plurality of subfields each having a brightness weight and achieving gray-scale representation by a combination of the subfields, each subfield including an address period and a sustain period. In the gray-scale representation method, the number of sustain pulses for each subfield is determined so that a light generated from the difference of the number of sustain pulses between two adjacent gray scales can be greater than a light discharged in the address period, when the number of subfields for the higher one of the two adjacent gray scales is less than that for the lower one. The reversion of gray scales that occurs when the address light is increased as high as the sustain light can be eliminated to achieve correct gray-scale representation. A smoother gray-scale representation can be achieved with reduced power consumption by adjusting the difference of the number of sustain pulses between the two adjacent gray scales in consideration of the address light.