Abstract:
Provided are methods of forming a contact plug of a semiconductor device. Methods of forming a contact plug of a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate on which a lower structure is formed, forming a contact hole in the interlayer insulating layer, the contact hole exposing the lower structure, and forming a W layer and then a WN layer to form a W/WN barrier layer in the contact hole. Methods may include H2 remote plasma treating the W/WN barrier layer, forming a W-plug on the H2 remote plasma treated W/WN barrier layer to fill the contact hole, and chemical mechanical polishing (CMP) the W-plug and then the W/WN barrier layer in order to expose the interlayer insulating layer.
Abstract:
A method of controlling process distribution of a semiconductor process includes receiving process distribution data representing the process distribution of the semiconductor process, receiving a parameter related to the process distribution, generating a virtual metrology model corresponding to the process distribution based on a relationship between the process distribution data and the parameter, and modifying a process variable affecting the process distribution based on the virtual metrology model.
Abstract:
A method of calculating a thickness of a layer may include forming the layer on a substrate in a chamber, measuring optical emission spectrum data from the chamber, and calculating the thickness of the layer from the optical emission spectrum data. A method of forming a layer may include depositing the layer on a substrate in a chamber, measuring optical emission spectrum data from the chamber, calculating a thickness of the layer using the optical emission spectrum data, and ending the depositing of the layer when the calculated thickness of the layer is within a target thickness range.
Abstract:
Contacts having different characteristics may be created by forming a first silicide layer over a first device region of a substrate, and then forming a second silicide layer over a second device region while simultaneously further forming the first silicide layer. A first contact hole may be formed in a dielectric layer over a first device region of a substrate. A silicide layer may then be formed in the first contact hole. A second contact hole may be formed after the first contact hole and silicide layer is formed. A second silicidation may then be performed in the first and second contact holes.
Abstract:
A conductive structure and method for making same is disclosed and includes a first nucleation layer formed by performing a cyclic deposition process on a substrate, a second nucleation layer formed on the first nucleation layer by a CVD process, and a bulk metal layer formed on the second nucleation layer.
Abstract:
An apparatus and method for fabricating semiconductor devices may increase reliability of the semiconductor devices by decreasing generation of particles and enhancing operation efficiency by decreasing the number of cleanings. The apparatus may include a chamber having a cover plate, susceptors for securely placing semiconductor substrates within the chamber, shower heads located on the cover plate to supply reaction gases into the chamber, and a curtain gas line connected to the cover plate to supply heated curtain gases between the shower heads.
Abstract:
Methods of forming electrical interconnects include forming a first electrically insulating layer on a semiconductor substrate and then forming an opening in the first electrically insulating layer. A step is performed to line a sidewall of the opening with a nitrified first metal layer having a non-uniform nitrogen concentration therein. An electrically conductive pattern is formed in the opening. A second metal nitride layer is provided between the electrically conductive pattern and the nitrified first metal layer.
Abstract:
A waste heat recovery device for a marine vessel is disclosed. According to the embodiments of the present invention, the waste heat recovery device for a marine vessel includes: a heat exchanger, which recovers heat from the exhaust fumes discharged from the engine, to heat a first refrigerant under uniform pressure; a turbine which is driven by adiabatically expanding the first refrigerant heated under uniform pressure; a condenser which condenses the adiabatically expanded first refrigerant; and a heat exchanging pump which compresses the condensed first refrigerant so as to re-circulate the compressed first refrigerant to the heat exchanger.
Abstract:
An apparatus and method for fabricating semiconductor devices may increase reliability of the semiconductor devices by decreasing generation of particles and enhancing operation efficiency by decreasing the number of cleanings. The apparatus may include a chamber having a cover plate, susceptors for securely placing semiconductor substrates within the chamber, shower heads located on the cover plate to supply reaction gases into the chamber, and a curtain gas line connected to the cover plate to supply heated curtain gases between the shower heads.
Abstract:
In a method of forming a wiring structure for a semiconductor device, an insulation layer is formed on a semiconductor substrate on which a plurality of conductive structures is positioned. An upper surface of the insulation layer is planarized and spaces between the conductive structures are filled with the insulation layer. The insulation layer is partially removed from the substrate to form at least one opening through which the substrate is partially exposed. A residual metal layer is formed on a bottom and a lower portion of the sidewall of the at least one opening and a metal nitride layer is formed on the residual metal layer and an upper sidewall of the opening with a metal material. Accordingly, an upper portion of the barrier layer can be prevented from being removed in a planarization process for forming the metal plug.