摘要:
A method of fabricating a nano-scale resistance cross-point memory array includes preparing a silicon substrate; depositing silicon oxide on the substrate to a predetermined thickness; forming a nano-scale trench in the silicon oxide; depositing a first connection line in the trench; depositing a memory resistor layer in the trench on the first connection line; depositing a second connection line in the trench on the memory resistor layer; and completing the memory array. A cross-point memory array includes a silicon substrate; a first connection line formed on the substrate; a colossal magnetoresistive layer formed on the first connection line; a silicon nitride layer formed on a portion of the colossal magnetoresistive layer; and a second connection line formed adjacent the silicon nitride layer and on the colossal magnetoresistive layer.
摘要:
A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
摘要:
A method is provided for patterning iridium oxide (IrOx) nanostructures. The method comprises: forming a substrate first region adjacent a second region; growing IrOx nanostructures from a continuous IrOx film overlying the first region; simultaneously growing IrOx nanostructures from a non-continuous IrOx film overlying the second region; selectively etching areas of the second region exposed by the non-continuous IrOx film; and, lifting off the IrOx nanostructures overlying the second region. Typically, the first region is formed from a first material and the second region from a second material, different than the first material. For example, the first material can be a refractory metal, or refractory metal oxide. The second material can be SiOx. The step of selectively etching areas of the second region exposed by the non-continuous IrOx film includes exposing the substrate to an etchant that is more reactive with the second material than the IrOx.
摘要:
A method of applying a PCMO thin film on an iridium substrate for use in a RRAM device, includes preparing a substrate; depositing a barrier layer on the substrate; depositing a layer of iridium on the barrier layer; spin coating a layer of PCMO on the iridium; baking the PCMO and substrate in a three-step baking process; post-bake annealing the substrate and the PCMO in a RTP chamber; repeating said spin coating, baking and annealing steps until the PCMO has a desired thickness; annealing the substrate and PCMO; depositing a top electrode; and completing the RRAM device.
摘要:
A method for forming a doped PGO ferroelectric thin film, and related doped PGO thin film structures are described. The method comprising: forming either an electrically conductive or electrically insulating substrate; forming a doped PGO film overlying the substrate; annealing; crystallizing; and, forming a single-phase c-axis doped PGO thin film overlying the substrate, having a Curie temperature of greater than 200 degrees C. Forming a doped PGO film overlying the substrate includes depositing a doped precursor in the range between 0.1N and 0.5N, with a molecular formula of Pby-xMxGe3O11, where: M is a doping element; y=4.5 to 6; and, x=0.1 to 1. The element M can be Sn, Ba, Sr, Cd, Ca, Pr, Ho, La, Sb, Zr, or Sm.
摘要翻译:描述了用于形成掺杂的PGO铁电薄膜的方法以及相关的掺杂PGO薄膜结构。 该方法包括:形成导电或电绝缘的衬底; 在衬底上形成掺杂的PGO膜; 退火; 结晶 并且形成覆盖在衬底上的单相c轴掺杂的PGO薄膜,其居里温度大于200℃。形成覆盖在衬底上的掺杂PGO膜包括沉积在0.1N和0.5之间的掺杂前体 N,具有分子式为Pb x Si x N x N x O 11,其中:M是掺杂物 元件; y = 4.5〜6; x = 0.1〜1。元素M可以是Sn,Ba,Sr,Cd,Ca,Pr,Ho,La,Sb,Zr或Sm。
摘要:
An electrode for use in a ferroelectric device includes a bottom electrode; a ferroelectric layer; and a top electrode formed on the ferroelectric layer and formed of a combination of metals, including a first metal take from the group of metals consisting of platinum and iridium, and a second metal taken from the group of metals consisting of aluminum and titanium; wherein the top electrode acts as a passivation layer and wherein the top electrode remains conductive following high temperature annealing in a hydrogen atmosphere. A method of forming a hydrogen-resistant electrode in a ferroelectric device includes forming a bottom electrode; forming a ferroelectric layer on the bottom electrode; depositing a top electrode on the ferroelectric layer; including depositing, simultaneously, a first metal taken from the group of metals consisting of platinum and iridium; and a second metal taken from the group of metals consisting of aluminum and titanium; and forming a passivation layer by annealing the structure in an oxygen atmosphere to form an oxide passivation layer on the top electrode.
摘要:
A method of synthesizing a PGO spin-coating precursor solution includes utilizing the starting materials of lead acetate trihydrate (Pb(OAc)2•3H2O) and germanium alkoxide (Ge(OR)4(R=C2H5 and CH(CH3)2)). The organic solvent is di(ethylene glycol) ethyl ether. The mixed solution of lead and di(ethylene glycol) ethyl ether is heated in an atmosphere of air at a temperature no greater than 185° C., and preferably no greater than 190° C. for a time period in a range of thirty minutes to four hours. During the heating step the color of the solution is monitored to determine when the reaction is complete and when decomposition of the desired product begins to take place. The solution is then added to germanium di(ethylene glycol) ethyl ether to make the PGO spin-coating solution. This second step also entails heating the solution to a temperature no greater than 190° C. for a time period in a range of 0.5 to 2.0 hours. The process results in a PGO precursor solution suitable for use in spin-coating.
摘要:
A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
摘要:
A method of etching a top electrode/ferroelectric stack using an etch stop layer includes forming a first layer of a first dielectric material on a substrate; forming a bottom electrode in the first layer of a first dielectric material; depositing an etch stop layer on the first layer of the first dielectric material and the bottom electrode, including forming a hole therein; depositing a layer of ferroelectric material and depositing top electrode material on the ferroelectric material to form a top electrode/ferroelectric stack; stack etching the top electrode and ferroelectric material; depositing a layer of a second dielectric material encapsulating the top electrode and ferroelectric material; etching the layer of the second dielectric material to form a sidewall about the top electrode and ferroelectric material; and depositing a second and third layers of the first dielectric material.
摘要:
An optical device with an iridium oxide (IrOx) electrode neural interface, and a corresponding fabrication method are provided. The method provides a substrate and forms a first conductive electrode overlying the substrate. A photovoltaic device having a first electrical interface is connected to the first electrode. A second electrical interface of the photovoltaic device is connected to a second conductive electrode formed overlying the photovoltaic device. An array of neural interface single-crystal IrOx nanostructures are formed overlying the second electrode, where x≦4. The IrOx nanostructures can be partially coated with an electrical insulator, such as SiO2, SiN, TiO2, or spin on glass (SOG), leaving the IrOx distal ends exposed. In one aspect, a buffer layer is formed overlying the second electrode surface, made from a material such as LiNbO3, LiTaO3, or SA, for the purpose of orienting the growth direction of the IrOx nanostructures.