Abstract:
An optoelectronic component includes a carrier with a mounting side and having at least one functional element, at least one substrateless optoelectronic semiconductor chip with a top and an opposed bottom and is electrically conductive by way of the top and the bottom, wherein the bottom faces the mounting side and the semiconductor chip is mounted on the mounting side, and at least one structured electrical contact film located on the top.
Abstract:
A light-emitting diode arrangement comprising a plurality of semiconductor chips which are provided for emitting electromagnetic radiation from their front side and which are fixed by their rear side—opposite the front side—on a first main face of a common carrier body, wherein the semiconductor chips consist of a respective substrateless semiconductor layer stack and are fixed to the common carrier body without an auxiliary carrier, and to a method for producing such a light-emitting diode arrangement.
Abstract:
A light-emitting diode arrangement comprising a plurality of semiconductor chips which are provided for emitting electromagnetic radiation from their front side (101) and which are fixed by their rear side (102)—opposite the front side—on a first main face (201) of a common carrier body (2), wherein the semiconductor chips consist of a respective substrateless semiconductor layer stack (1) and are fixed to the common carrier body without an auxiliary carrier, and to a method for producing such a light-emitting diode arrangement.
Abstract:
A radiation-emitting component includes a carrier, a semi-conductor chip arranged on the carrier, wherein the semi-conductor chip includes an active layer to generate electromagnetic radiation and a radiation exit surface, a first and a second contact structure for the electrical contacting of the semi-conductor chip, a first and a second contact layer, wherein the semi-conductor chip is electrically conductively connected to the first contact structure via the first, contact layer and to the second contact structure via the second contact layer, a passivation layer arranged on the semi-conductor chip.
Abstract:
An LED projector includes a plurality of light sources; and an image generator which includes an arrangement of pixels, each pixel including at least one light source; wherein the LEDs are stacked epi-LEDs which include layers arranged above one another for different colors, or each pixel includes an emission surface and at least two LEDs are arranged adjacent one another in the emission surface.
Abstract:
A method for producing a plurality of optoelectronic devices is specified, comprising the following steps: providing a connection carrier assemblage having a plurality of device regions, wherein at least one electrical connection region is provided in each of the device regions, providing a semiconductor body carrier, on which a plurality of separate semiconductor bodies connected to the semiconductor body carrier are arranged, wherein the semiconductor bodies each have a semiconductor layer sequence having an active region, arranging the connection carrier assemblage and the semiconductor body carrier relative to one another in such a way that the semiconductor bodies face the device regions, mechanically connecting a plurality of semiconductor bodies to the connection carrier assemblage in a mounting region of a device region assigned to the respective semiconductor body, electrically conductively connecting the respective semiconductor body to the connection region of the device region assigned to the semiconductor body, and separating from the semiconductor body carrier the semiconductor bodies that are to be connected or are connected to the connection carrier assemblage, and dividing the connection carrier assemblage into a plurality of separate optoelectronic devices each having a connection carrier, which has the device region, and a semiconductor body arranged on the connection carrier and electrically conductively connected to the connection region.
Abstract:
A semiconductor component comprising an optically active layer and characterized by at least one cooling element and at least one coupling element. Also disclosed is an arrangement comprising a multiplicity of optically active layers and a method for producing a semiconductor component.