摘要:
A hybrid multi-bit memory device may include a plurality of unit cells arranged in a matrix of a plurality of rows and columns. Each of the unit cells may include a first memory unit and a second memory unit. The first and second memory unit may share a source and a drain. The first memory unit of each unit cell arranged in each row may be connected to one of a plurality of word lines, and the drain of each unit cell arranged in each column may be connected to one of a plurality of bit lines.
摘要:
Provided are a non-volatile memory device that may expand to a stacked structure and may be more easily highly integrated and an economical method of fabricating the non-volatile memory device. The non-volatile memory device may include at least one semiconductor column. At least one first control gate electrode may be arranged on a first side of the at least one semiconductor column. At least one second control gate electrode may be arranged on a second side of the at least one semiconductor column. A first charge storage layer may be between the at least one first control gate electrode and the at least one semiconductor column. A second charge storage layer may be between the at least one second control gate electrode and the at least one semiconductor column.
摘要:
A highly integrated non-volatile memory device and a method of operating the non-volatile memory device are provided. The non-volatile memory device includes a semiconductor layer. A plurality of upper control gate electrodes are arranged above the semiconductor layer. A plurality of lower control gate electrodes are arranged below the semiconductor layer, and the plurality of upper control gate electrodes and the plurality of lower control gate electrodes are disposed alternately. A plurality of upper charge storage layers are interposed between the semiconductor layer and the upper control gate electrodes. A plurality of lower charge storage layers are interposed between the semiconductor layer and the lower control gate electrodes.
摘要:
Provided is a bulb-type light concentrated solar cell module that includes a reflective mirror unit that is concavely formed to convergingly reflect sunlight and has a first hole on a bottom thereof; a solar cell that generates electrical energy in response to light received from the reflective mirror unit; a socket that blocks the first hole at a lower part of the reflective mirror unit and is fixed on the reflective mirror unit; and a power control unit that is electrically connected to the solar cell to generate electricity in the socket.
摘要:
A distance measuring sensor may include: a photoelectric conversion region; first and second charge storage regions; first and second trenches; and/or first and second vertical photogates. The photoelectric conversion region may be in a substrate and/or may be doped with a first impurity in order to generate charges in response to received light. The first and second charge storage regions may be in the substrate and/or may be doped with a second impurity in order to collect charges. The first and second trenches may be formed to have depths in the substrate that correspond to the first and second charge storage regions, respectively. The first and second vertical photogates may be respectively in the first and second trenches. A three-dimensional color image sensor may include a plurality of unit pixels. Each unit pixel may include a plurality of color pixels and the distance measuring sensor.
摘要:
A non-volatile memory device and a method of fabricating the same are provided. A non-volatile memory device may include a semiconductor substrate including a body and at least one pair of fins vertically protruding from the body and spaced apart from each other, and at least one control gate electrode on at least portions of outer side surfaces of the at least one pair of fins and extending onto top portions of the at least one pair of fins on an angle with the at least one pair of fins. The non-volatile memory device may further include at least one pair of gate insulating layers between the at least one control gate electrode and the at least one pair of fins, and at least one pair of storage node layers between the at least one pair of gate insulating layers and at least a portion of the at least one control gate electrode. The at least one control gate electrode may extend onto top portions of the at least one pair of fins in a zigzag fashion.
摘要:
A multi bits flash memory device and a method of operating the same are disclosed. The multi bits flash memory device includes: a stacked structure including: a first active layer with a mesa-like form disposed on a substrate; a second active layer, having a different conductivity type from the first active layer, formed on the first active layer; an active interlayer isolation layer interposed between the first active layer and the second active layer such that the first active layer is electrically isolated from the second active layer; a common source and a common drain formed on a pair of opposite side surfaces of the stacked structure; a common first gate and a common second gate formed on the other pair of opposite side surfaces of the stacked structure; a tunnel dielectric layer interposed between the first and second gates and the first and second active layers; and a charge trap layer, storing charges that tunnel through the tunnel dielectric layer, interposed between the tunnel dielectric layer and the first and second gates.
摘要:
Example embodiments relate to a semiconductor device including a fin-type channel region and a method of fabricating the same. The semiconductor device includes a semiconductor substrate, a semiconductor pillar and a contact plug. The semiconductor substrate includes at least one pair of fins used (or functioning) as an active region. The semiconductor pillar may be interposed between portions of the fins to connect the fins. The contact plug may be disposed (or formed) on the semiconductor pillar and electrically connected to top surfaces of the fins.
摘要:
A nonvolatile memory device having lower bit line contact resistance and a method of fabricating the same is provided. In the nonvolatile memory device, a semiconductor substrate of a first conductivity type may include first and second fins. A common bit line electrode may connect one end of the first fin to one end of the second fin. A plurality of control gate electrodes may cover the first and second fins and expand across the top surface of each of the first and second fins. A first string selection gate electrode may be positioned between the common bit line electrode and the plurality of control gate electrodes. The first string selection gate electrode may cover the first and second fins and expand across the top surface of each of the first and second fins. A second string selection gate electrode may be positioned between the first string selection gate electrode and the plurality of control gate electrodes. The second string selection gate electrode may cover the first and second fins and expand across the top surface of each of the first and second fins. The first fin under the first string selection gate electrode and the second fin under the second string selection gate electrode may have a second conductivity type opposite to the first conductivity type.
摘要:
Provided are example embodiments of a non-volatile memory device and a method of fabricating the same. The non-volatile memory device may include a control gate electrode arranged on a semiconductor substrate, a gate insulating layer interposed between the semiconductor substrate and the control gate electrode, a storage node layer interposed between the gate insulating layer and the control gate electrode, a blocking insulating layer interposed between the storage node layer and the control gate electrode, first dopant doping regions along a first side of the control gate electrode, and second dopant doping regions along a second side of the control gate electrode. The first dopant doping regions may alternate with the second dopant doping regions. Stated differently, each of the second dopant doping regions may be arranged in a region on the second side of the control gate electrode that is adjacent to one of the first dopant doping regions.