Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
Metal cord of K×(L+M) construction. K elementary strands assembled in a helix, with pitch PK, each having a cord with L wire inner layer of diameter d1, and M wire outer layer of diameter d2, in a helix with pitch p2 around the inner layer; with (in mm): 0.10
Abstract:
A compact metal cable having two layers (C1, C2) of construction 1+N, rubberized in situ, usable in particular as a reinforcing element for a tire belt for a heavy industrial vehicle, comprising a core or inner layer (C1) comprising a single core wire of diameter d1, and a saturated outer layer (C2) of N wires of diameter d2 wound together in a helix at a pitch p2 around the layer C1. The layered cable has the following characteristics (d1, d2, p2 in mm): 0.15
Abstract:
Elastic metal/textile composite cord (C-1) having two layers (Ci, Ce) of 1+N construction, formed from a core or inner layer (Ci) comprising a textile core thread (10) of diameter d1 and a metal outer layer (Ce) of N wires (12) of diameter d2 wound together in a helix with a pitch p2 around the layer Ci, said cord being characterized in that it has the following characteristics (p2 in mm): As>1.0%; At>4.0%; Af>6.0%; d1>1.1d2; 4
Abstract:
A steel cord (50) comprises a core layer and an outer layer. The core layer comprises a number of first steel filaments (10) and the outer layer comprises a number of second steel filaments (20). The outer layer is helically twisted around the core layer. The first steel filaments have a twisting pitch greater than 310 mm. At least one of the first steel filaments (10) is wavy preformed in one plane. At least one of the second steel filaments (20) is polygonally preformed.
Abstract:
A two-layer cord having a number of wires in the outer layer, enclosing, but not completely, a cord core formed by a plurality of core wires, and in which the core wires are not preformed, while at least some of the outer wires are preformed.
Abstract:
There are provided an annular concentric stranded bead cord which can realize a reduction in weight while ensuring its strength, a method for manufacturing the same and a vehicle tire.The manufacturing method is a method for manufacturing an annular concentric stranded bead cord by forming a sheath layer by winding spirally a lateral wire round an annular core. After the sheath layer has been formed, the lateral wire is annealed in a pressure-reduced inactive gaseous atmosphere with an annealing quantity which exceeds a heating quantity (temperature×time) which is necessary for vulcanization of a vehicle tire with the annular concentric stranded bead cord embedded in a rubber of the vehicle tire when building the same and is shaped so that “Diameter shaping ratio (%)=H/D×100” becomes 20% or larger and 105% or smaller.
Abstract translation:提供了一种环形同心绞合胎圈帘线,其可以在确保其强度的同时实现重量的减轻,其制造方法和车辆轮胎。 制造方法是通过围绕环形芯螺旋地缠绕侧线而形成护套层来制造环形同心绞合胎圈帘线的方法。 在形成护套层之后,将侧线在减压惰性气体气氛中退火,其退火量超过用环形同心绞线珠子对车辆轮胎硫化所需的加热量(温度×时间) 帘线嵌入车轮胎的橡胶中,并且成形为“直径成形率(%)= H / D×100”变为20%以上且105%以下。
Abstract:
A hybrid layered cable for use in tire reinforcement includes a non-metallic internal layer and an unsaturated external layer including 3-12 strands. Each strand is at least partly metallic and is helically wound around the internal layer. Each strand includes at least 3 filaments wound helically together. The cable has a relative elongation at break, measured in tension in accordance with the standard ISO 6892 of 1984, which is higher than 7%.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
A tire cord having core filaments (10) performed into a helical configuration while maintaining the core filaments (10) in a parallel, side-by-side relationship. The core filaments (10) are not twisted or stranded together. High tensile strength sheath filaments (11) are also performed into a flattened helical configuration so that the sheath filaments (11) can be wrapped around the side-by-side core filaments such that the sheath filaments (11) do not put such tension on the core filaments (10) as to cause the core filaments (10) to bunch. The core filaments (10) are maintained in a flat side-by-side configuration so that no voids are formed and rubber can penetrate into the tire cord. The core filaments (10) may number from three to six and the sheath filaments (11) from one to seven. The cross-section of the tire cord is flattened and confined within an oval-shaped outer bound (21), the oval outer bound (21) being characterized by a major axis and a minor axis. It is desirable that the minor axis be no greater than 60% of the major axis to create the appropriate difference in the bending modulus of the tire cord in the horizontal versus the vertical direction.