Abstract:
A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.
Abstract:
A light guide member for an object detection apparatus is devised. The object detection apparatus includes a light source unit, and a detection unit for detecting an object adhered on a surface of a light translucent member based on change of light quantity of reflection light received from the light translucent member. The light guide member includes an incident face where the light exiting from the light source unit enters; a detection face where the exiting light exits to a rear face of the light translucent member and the reflection light reflected from the light translucent member enters; an exiting face where the reflection light exits to the detection unit; and a light guiding portion through which the exiting light and the reflection light proceed. The detection face has curvature corresponding to curvature of the light translucent member.
Abstract:
A blood purification apparatus includes a blood purification instrument for extracorporeally circulating blood of a patient and a concentration detector detecting a concentration of liquid flowing during blood purification. The concentration detector has a light emitter irradiating light onto said liquid, a light receiver receiving light from the light emitter transmitted through said liquid, and a detector detecting the received light intensity received by the light receiver. The concentration detector detects the concentration of the liquid based on the received light intensity and can be calibrated by adjusting an amount of irradiation by the light emitter so that the received light intensity has a predetermined value.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.
Abstract:
A multi-channel arrayed isosbestic wavelength detection system comprises an arrayed light source board, an arrayed photoelectric sensor board, and an intermediate system frame. The arrayed light source board and arrayed photoelectric sensor board are assembled at opposite sides of the intermediate system frame. In addition, the arrayed light source system has a plurality of light-emitting elements, each of which comprises two monochromatic light sources that provide main wavelength and reference wavelength respectively, and the two wavelengths are isosbestic wavelengths. The arrayed photoelectric sensor system has a plurality of photoelectric sensors, which are aligned at fixed positions in one-to-one correspondence with the light-emitting elements.
Abstract:
A blood purification apparatus includes a blood purification instrument for extracorporeally circulating blood of a patient and a concentration detector detecting a concentration of liquid flowing during blood purification. The concentration detector has a light emitter irradiating light onto said liquid, a light receiver receiving light from the light emitter transmitted through said liquid, and a detector detecting the received light intensity received by the light receiver. The concentration detector detects the concentration of the liquid based on the received light intensity and can be calibrated by adjusting an amount of irradiation by the light emitter so that the received light intensity has a predetermined value.
Abstract:
Optical systems, and corresponding methods, for multiple reactions are provided. The optical systems are in a fixed position relative to a thermal assembly and include at least one array of excitation sources (e.g., light emitting diodes (LEDs)) configured to output excitation energy along an excitation optical path. In addition, a detector configured to receive emission energy along a detection optical path in the same plane as the excitation optical path is also provided.
Abstract:
A machine-vision system that provides changing and/or automatic adjustment of illumination angle, dispersion, intensity, and/or color of illumination. One such system includes a light source emitting polarized light, a machine-vision imager, an image processor operative to generate a quality parameter based on the image, and one or more of the means described above for selectively directing the light in a predetermined pattern based on its polarization and on the quality parameter of the image. Some embodiments include an imager, a controllable light source, first and second optical elements, that selectively direct light in first and second patterns, and a controller controlling the light characteristics using the first and second light patterns. One method includes setting one or more illumination parameters, illuminating the object based on the illumination parameters, obtaining an image, generating a quality parameter based on a region of interest, and iterating using different illumination parameters.
Abstract:
A portable, scanning and analyzing apparatus that uses an integrated scan probe for the scanning operation is described. The integrated scanning probe is formed with a light emitting diode array light source and a photodiode detector array. After a test sample finishes the reaction in test strip paper, a scanner device scans the test paper to collect the optical signals at variable, consecutive intervals along the scanning path to obtain the test signal accordingly. Then, the scanner device outputs the test signal for amplification. The amplified test signals are sent to an analog/digital converter such that the amplified test signals are converted into digital signals, which are then output to a computing unit for analyzing for subjective analytical results. The computing unit couples with the controller device, wherein the controller device controls a driver device that drives the scanner device to perform the scanning operation on the test paper.