摘要:
A display device and an operating method thereof are provided. The display device includes a display module for providing an original image, a optical component, a sensing module, and a control module. The optical component is for projecting a translating image of the original image and includes a first LC GRIN lens array, and a second LC GRIN lens array arranged parallel to the first LC GRIN lens array. The control module is for receiving an object information from the sensing module and adjusting the translating image by applying a first bias arrangement to the first LC GRIN lens array and a second bias arrangement to the second LC GRIN lens array according to the object information.
摘要:
An optical device and a light source module including the same are provided. The optical device includes a first surface having an incident portion; a second surface emitting light incident through the incident portion outwardly; a support portion protruding from the first surface; and a blocking portion surrounding an outer portion of the support portion, the blocking portion being stepped with respect to the first surface.
摘要:
An optical lens includes a central optical portion and a mounting portion around the central optical portion. The central optical portion has a bottom and defines a central cavity recessed upwardly from the bottom. The central cavity is provided for receiving a light source therein. The bottom defines at least a frosted portion around the central cavity and at least a microstructure portion around the at least a frosted portion. A roughness of the at least a microstructure portion is larger than a roughness of the at least a frosted portion. The roughness of each of the at least a microstructure and frosted portion is gradually decreased alone a direction toward the central cavity.
摘要:
An image-processing device includes an image acquiring device, an encoded aperture pattern setting device configured to set encoded aperture patterns for multiple pupil images of the main lens, respectively, a calculation device configured to perform a weighted product-sum calculation between the pupil image for each lens of the lens array in the image acquired from the image sensor and the encoded aperture pattern set by the encoded aperture pattern setting device, and an image generating device configured to generate an image based on a calculation result by the calculation device.
摘要:
Camera systems and methods for gigapixel computational imaging are provided. In some embodiments, the camera system comprises: a ball lens, an array of image sensors disposed at a distance from the ball lens, the array of image sensors configured to acquire images from light that passes through the ball lens; and a processor configured to deblur and stitch the images captured by the array of image sensors to generate a gigapixel image.
摘要:
Described are unigue LED die and die on circuit board configurations used in combination with elongated homogenizers to achieve uniform lights with a wider color gamut.
摘要:
Provided is a LED light source package comprising a circuit board, a light source seated on an upper portion of the circuit board, and a lens structure arranged on the upper portion of the circuit board via the light source. A surface that faces the light source in the lens structure includes a first inclined surface that projects toward the light source as going to a center portion of the lens structure.
摘要:
The present application relates to a quantum dot lens and a manufacturing method thereof, wherein the quantum dot comprises a lens body in the form of a rotator, a light incident surface and a light exit surface are formed on the lens body, the centers of the light incident surface and the light exit surface are located in the center axis of the lens body; and quantum dot materials are filled inside the lens body. The quantum dot lens can be used with a single LED. Since the light excited from the quantum dot materials can directly meet the need of increasing the light emitting angle, the quantum dot lens has no need to be used with a second lens for light distribution; the quality of the backlight used in the backlight illumination can be improved; and the high gamut in the direct type backlight can be achieved.
摘要:
A lens for an LED backlight module includes a main lens body and a diffusion structure consisting of a plurality of micro lenses. The main lens body includes a light incident face for receiving light from an LED light source and a light exit face opposite to the light incident face thereof. Light leaves the lens from the light exit face. The micro lenses of the diffusion structure are formed on the light exit face of the main lens body. Each micro lens is annular and has a generally triangular cross section. Each micro lens includes a first light scattering surface and a second light scattering surface intersecting with the first light scattering surface. The micro lenses are arranged in a series of concentric circles with regard to a center of the lens. A backlight module source incorporating the lens and the LED light source is also provided.
摘要:
Method of manufacturing an optical element capable of providing a satisfactory shape accuracy even where a plurality of optical elements are molded. By providing a protruding portion 12d to change the flow of molten glass drop GD for an optical element with a forming mold 10, it is possible to make the glass drop GD for an optical element flow along an optical surface transferring surface 12a in the vicinity of edge side close to the drop point of the glass drop GD for an optical element, among the optical surface transferring surfaces 12a. According to this, even where a plurality of glass lenses 100 are collectively molded, it is possible to transfer an optical function surface 101a of the glass lens 100 to each optical surface transferring surface 12a with a high accuracy and to collectively manufacture the glass lenses 100 with a satisfactory shape accuracy.