Abstract:
Systems for x-ray microscopy using an array of micro-beams having a micro- or nano-scale beam intensity profile to provide selective illumination of micro- or nano-scale regions of an object. An array detector is positioned such that each pixel of the detector only detects x-rays corresponding to a single micro-or nano-beam. This allows the signal arising from each x-ray detector pixel to be identified with the specific, limited micro- or nano-scale region illuminated, allowing sampled transmission image of the object at a micro- or nano-scale to be generated while using a detector with pixels having a larger size and scale. Detectors with higher quantum efficiency may therefore be used, since the lateral resolution is provided solely by the dimensions of the micro- or nano-beams. The micro- or nano-scale beams may be generated using a arrayed x-ray source and a set of Talbot interference fringes.
Abstract:
Disclosed herein is an apparatus for detecting X-ray. The apparatus has an X-ray absorption layer with an electrode, one or more voltage comparators configured to compare a voltage of the electrode to one or more thresholds, a counter configured to register the number of X-ray photons absorbed by the X-ray absorption layer, and a controller.
Abstract:
Disclosed herein is an apparatus suitable for detecting x-ray, comprising: an X-ray absorption layer comprising an electrode; an electronics layer, the electronics layer comprising: a substrate having a first surface and a second surface, an electronics system in or on the substrate, an electric contact on the first surface, a via, and a redistribution layer (RDL) on the second surface; wherein the RDL comprises a transmission line; wherein the via extends from the first surface to the second surface; wherein the electrode is electrically connected to the electric contact; wherein the electronics system is electrically connected to the electric contact and the transmission line through the via.
Abstract:
A method of investigating a specimen using X-ray tomography, comprising (a) mounting the specimen to a specimen holder, (b) irradiating the specimen with a beam of X-rays along a first line of sight through the specimen, and (c) detecting a flux of X-rays transmitted through the specimen and forming a first image. Then (d) repeating the steps (b) and (c) for a series of different lines of sight through the specimen, thereby producing a corresponding series of images. The method further comprises (e) performing a mathematical reconstruction on said series of images, so as produce a tomogram of at least part of the specimen, wherein the specimen is disposed within a substantially cylindrical metallic shell with an associated cylindrical axis, the beam of X-rays is produced by directing a beam of charged particles onto a zone of said metallic shell, so as to produce a confined X-ray source at said zone, and the series of different lines of sight is achieved by rotating said shell about said cylindrical axis, thereby causing relative motion of said zone relative to the specimen.
Abstract:
Improved system and method of X-ray laser microscopy that combines information obtained from both X-ray diffraction and X-ray imaging methods. The sample is placed in an ultra-cold, ultra-low pressure vacuum chamber, and exposed to brief bursts of coherent X-ray illumination further concentrated using X-ray mirrors and pinhole collimation methods. Higher resolution data from a sample is obtained using hard X-ray lasers, such as free electron X-ray lasers, and X-ray diffraction methods. Lower resolution data from the same sample can be obtained using any of hard or soft X-ray laser sources, and X-ray imaging methods employing nanoscale etched zone plate technology. In some embodiments both diffraction and imaging data can be obtained simultaneously. Data from both sources are combined to create a more complete representation of the sample. Methods to further improve performance, such as concave or curved detectors, improved temperature control, and alternative X-ray optics are also disclosed.
Abstract:
Disclosed herein is an apparatus suitable for detecting x-ray, comprising: an X-ray absorption layer comprising an electrode; an electronics layer, the electronics layer comprising: a substrate having a first surface and a second surface, an electronics system in or on the substrate, an electric contact on the first surface, a via, and a redistribution layer (RDL) on the second surface; wherein the RDL comprises a transmission line; wherein the via extends from the first surface to the second surface; wherein the electrode is electrically connected to the electric contact; wherein the electronics system is electrically connected to the electric contact and the transmission line through the via.
Abstract:
Methods and systems for reducing the effect of finite source size on illumination beam spot size for Transmission, Small-Angle X-ray Scatterometry (T-SAXS) measurements are described herein. A beam shaping slit having a slender profile is located in close proximity to the specimen under measurement and does not interfere with wafer stage components over the full range of angles of beam incidence. In one embodiment, four independently actuated beam shaping slits are employed to effectively block a portion of an incoming x-ray beam and generate an output beam having a box shaped illumination cross-section. In one aspect, each of the beam shaping slits is located at a different distance from the specimen in a direction aligned with the beam axis. In another aspect, the beam shaping slits are configured to rotate about the beam axis in coordination with the orientation of the specimen.
Abstract:
A compound x-ray lens and method of fabricating these lenses are disclosed. These compound lenses use multiple zone plate stacking to achieve a pitch frequency increase for the resulting combined zone plate. The compound equivalent zone plate includes a first zone plate having an initial pitch frequency stacked onto a second zone plate to form an equivalent compound zone plate. The equivalent zone plate has a pitch frequency that is at least twice the initial pitch frequency. Also, in one example, the equivalent zone plate has a mark-to-space ratio of 1:1.
Abstract:
Improved system and method of X-ray laser microscopy that combines information obtained from both X-ray diffraction and X-ray imaging methods. The sample is placed in an ultra-cold, ultra-low pressure vacuum chamber, and exposed to brief bursts of coherent X-ray illumination further concentrated using X-ray mirrors and pinhole collimation methods. Higher resolution data from a sample is obtained using hard X-ray lasers, such as free electron X-ray lasers, and X-ray diffraction methods. Lower resolution data from the same sample can be obtained using any of hard or soft X-ray laser sources, and X-ray imaging methods employing nanoscale etched zone plate technology. In some embodiments both diffraction and imaging data can be obtained simultaneously. Data from both sources are combined to create a more complete representation of the sample.
Abstract:
A product structure (407, 330′) is formed with defects (360-366). A spot (S) of EUV radiation which is at least partially coherent is provided on the product structure (604) to capture at least one diffraction pattern (606) formed by the radiation after scattering by the product structure. Reference data (612) describes a nominal product structure. At least one synthetic image (616) of the product structure is calculated from the captured image data. Data from the synthetic image is compared with the reference data to identify defects (660-666) in the product structure. In one embodiment, a plurality of diffraction patterns are obtained using a series overlapping spots (S(1)-S(N)), and the synthetic image is calculated using the diffraction patterns and knowledge of the relative displacement. The EUV radiation may have wavelengths in the range 5 to 50 nm, close to dimensions of the structures of interest.