Abstract:
A contention window for allocating bandwidth in a wireless network is determined. A plurality of nodes includes at least a first and a second router and at least one client connected to each of the first and second routers. Information is received at the first router from the other nodes, the information relating to the condition of the other nodes. A contention window is calculated for the first router based on the received information and the delay is set for a retransmission of data by the first router to the calculated contention window following an unsuccessful transmission of the data.
Abstract:
A method for increasing bit-rate consumed by a consumer node in a real-time peer-to-peer (P2P) network delivering real-time multimedia content. The method comprises determining desirability to switch to a higher bit-rate consumption respective of a current bit-rate consumption; sending requests to resource nodes of the P2P network for supply of additional bandwidth to support a difference between the higher bit-rate consumption and the current bit-rate consumption; connecting to at least one resource node of the P2P network that can supply the additional bandwidth, thereby increasing bit-rate consumption; determining whether there are connection problems due to the increase in bit-rate consumption; and consuming from the at least one resource node the current bit-rate in addition to the additional bandwidth when no connection problems occur and it is established that the consumer node is capable of handling the higher bit-rate consumption of the real-time multimedia content.
Abstract:
Provided are a method, system, and program for managing data transmissions at a local network device communicating with a linked network device over a network, wherein each network device is capable of transmitting data at different speeds. An operation is initiated to change a current transmission speed at which data is transmitted between the local and linked network devices in response to a speed change event. A determination is made of a new transmission speed different from the current transmission speed. A register is set in the local network device to indicate the new transmission speed. A speed change request and the new transmission speed are transmitted to the linked network device to cause the local and linked network devices to communicate at the new transmission speed, wherein the transmission occurs without terminating a linked exchange occurring between the local and linked network devices.
Abstract:
A method of dynamically managing transmission of packets is disclosed. The method, in some embodiments, may comprise establishing a network session over a communication link between a network and a user device of a user and associating a data transmission parameter with the user device. The method may further comprise receiving a packet and calculating a delay period associated with the packet based on the data transmission parameter and delaying transmission of the packet based on the delay period.
Abstract:
Control for admitting microflows to a data network consisting of allocating logic priority levels to these microflows making it possible to implement a microflow preemption order based on this logic priority. If the service quality required for a new microflow A cannot be ensured by the internal resources of the network, it is thus possible to free the internal resources of said network by preempting a lower logic priority microflow B.
Abstract:
A layered operating system architecture enables decoupling of a media access control (MAC) layer from a physical (PHY) layer. The decoupled MAC and PHY layer removes responsibility from the MAC layer with respect to understanding network resources, network space and network scheduling and allocation demands when processing data for transport over a network. The MAC layer may instead operate according to an allocation scheduled provided by a convergence layer responsible for understanding the varying conditions and demand attendant to supporting communications over the network.
Abstract:
Methods and systems are provided for synchronizing reservation status between an access terminal and an access node. In one embodiment, an access terminal receives a report from an access node, the report reflecting a first set of reservations, wherein the first set is a set of reservations that the access node is maintaining with respect to communicating with the access terminal. In response to receiving the report, the access terminal compares the first set of reservations with a second set of reservations, wherein the second set is a set of reservations that the access terminal is maintaining with respect to communicating with the access node. Upon comparing the first set with the second set, the access terminal determines that the first set is not equal to the second set, and responsively sends one or more messages to the access node to cause the access node to modify the first set to match the second set.
Abstract:
The present invention relates to synchronizing a terminal and a server in a shadow area of service in a push-to-talk (PTT) service system. An alive report packet is periodically transmitted to a server by a terminal having no permission to send a talk burst. A talk burst idle packet is periodically transmitted to each session-established terminal by the server in an idle state. Sessions are ended between each terminal and server if either the alive report packet or the talk burst idle packet are not received for a certain time. Accordingly, synchronization between the server and the terminal is periodically certified, unnecessary traffic generated due to inconsistent synchronization is decreased, and quality of service is enhanced.
Abstract:
Embodiments disclosed herein provide a control device and a method executing thereon for allocating network bandwidth to users accessing a controlled network. In response to a user connecting to the control device using a user device, the control device obtains a user bandwidth allocation profile for that user based on user credentials. The user bandwidth allocation profile may be stored local or remote to the control device. A provisioning module running on the control device can map attributes in the user bandwidth allocation profile to a traffic control rule and associate the traffic control rule with the user based on the user credentials and considering information identifying the user device used by the user to connect to the control device. A traffic conditioning module running on the control device can regulate the network bandwidth usage by the user utilizing the traffic control rule associated with the user.
Abstract:
A multiservice IP network and a method are described herein that use an enhanced QOS message which makes it possible for an IP router to reserve resources for and admit a high priority traffic flow without needing to terminate an existing low priority traffic flow. In accordance with the present invention, in the event an emergency reservation request arrives at an IP router and there are not enough resources to support the high priority traffic flow, then the IP router reduces the reservation of one or more low priority traffic flows to a reduced level. The IP router also sends a notification message to the sender indicating that the reservations have been reduced. Thereafter, the high priority traffic flow can be admitted. As such, if there is enough adaptive traffic in the multiservice IP network, then the low priority calls need not be terminated instead only the resources are reduced to a lower but still acceptable QoS level. And, when traffic conditions improve the reduced reservations can be increased back to the original level.