Abstract:
A method is provided for the modification of microbial metabolism using a unipolar magnetic field. By applying a unipolar magnetic field to microbes under controlled conditions, changes in the rate and/or efficiency of metabolism are produced.
Abstract:
Deflection apparatus is shown for high perveance ion beams, operating at 20 Hz fundamental and substantially higher order harmonics, having a magnetic structure formed of laminations with thickness in range between 0.2 and 1 millimeter. Additionally, a compensator is shown with similar laminated structures with resonant excitation circuit, operating at 20 Hz or higher, in phase locked relationship with the frequency of the previously deflected beam. Furthermore, features are shown which have broader applicability to producing strong magnetic field in magnetic gap. Among the numerous important features shown are special laminated magnetic structures, including different sets of crosswise laminations in which the field in one lamination of one set is distributed into multiplicity of laminations of the other set of coil-form structures, field detection means and feedback control system, cooling plate attached in thermal contact with number of lamination layers. Surfaces on the entry and exit sides of the compensator magnetic structure have cooperatively selected shapes to increase the length of path exposed to the force field dependently with deflection angle to compensate for contribution to deflection angle caused by higher order components. The entry and exit surfaces of the magnetic scanner and compensator structures cooperating to produce desired beam profile and desired limit on angular deviation of ions within the beam. Also shown is an accelerator comprising a set of accelerator electrodes having slotted apertures, a suppressor electrode at the exit of the electrostatic accelerator, a post-accelerator analyzer magnet having means for adjusting the angle of incidence by laterally moving the post-accelerator analyzer magnet, and a magnet to eliminate aberration created by the post-accelerator analyzer magnet. In the case of use of a spinning substrate carrier for scanning in one dimension, the excitation wave form of the scanner relates changes in scan velocity in inverse dependence with changes in the radial distance of an implant point from the rotation axis. Also an oxygen implantation method is shown with 50 mA ion beam current, the ion beam energy above 100 KeV, and the angular velocity of a rotating carrier above 50 rpm.
Abstract:
A saddle type dipole coil comprises a pair of elongated ring shaped upper and lower coil layers each having an assembly of coil conductors of series-connected turns. The upper and lower coil layers are opposed each other and disposed on the outer surface of a duct. The end portions of the upper and lower coil layers positioned in a range of a predetermined width are so extended by a predetermined length in the longitudinal direction that the integral value of only sextupole components of a magnetic field is minimized or set nearly zero among the entire multi-pole components of the magnetic field, thereby enabling to make a synchrotron radiation ray generating device with good efficiency of accelerating particles.
Abstract:
Apparatus for accelerating and transporting a charged particle beam. The apparatus has a housing which encases an accelerating structure as well as a magnet system. The accelerating structure accelerates an injected charged particle beam within a first evacuated space and directs the beam into the magnet system which transports it along a bent beam path within a second evacuated space. Both spaces are separate from each other and the magnet system is supported within the housing such that it can be angularly adjusted with respect to the accelerating structure. In a preferred embodiment, the second evacuated spaced is partially defined by magnet poles of the magnet system and filled with helium under a pressure of higher than 10.sup.-2 torr.
Abstract:
A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.
Abstract:
This invention relates to a fine focusing lens for charged particle beams. Since the field lines of the poles are additive, and the lens 50 can be made to be very small, the lens can be used inside of a coarse focusing lens 51. The lens 50 employs a plurality of poles 1-32, evenly spaced, circumferentially around the lens. The poles may be wires 38 for electromagnetic poles or plates 35 for electrostatic poles. Each pole can be tagged to induce a frequency, pulse, or phase signal on the charged particle beam 49, so that the effects of each pole on the beam can be separately detected. The beam can therefore be focused by seeing the effects of and adjusting each pole separately. As the number of poles increases, the ability to finely focus a charged particle beam increases. The lens 50 as shown in the figures has 32 poles, which is enough to very finely focus a charged particle beam.
Abstract:
A surface analyzer for analyzing physical properties of the surface of a sample by means of PELS (Proton energy loss spectroscopy) in which accelerated ion beams such as proton beams impinge on the sample in the vertical direction to the surface of the sample and ion beams scattered from the sample are decelerated and then detected by an analyzer to analyze the energy loss of the ion beams. The surface analyzer comprises an ion beam source for generating ion beams, deflecting means for deflecting the ion beams from the ion beam source, irradiating the surface of the sample with the ion beams from the ion beam source in the vertical direction to the surface of the sample, and deflecting scattered ion beams from the sample, accelerating and decelerating means for accelerating the ion beams before the ion beams impinge on the sample and decelerating the scattered ion beams, and analyzing means for detecting the scattered beams and analyzing energy loss of the ion beams.
Abstract:
A method and an apparatus for irradiating a relatively large area with a charged particle beam. In the method, a pencil-like beam is generated and spread along a fan axis perpendicular to the beam axis. The fan axis is rotated around the beam axis so that finally a circular area is irradiated. The apparatus includes means for generating a pencil-like beam, a lens system for spreading the beam along the fan axis and means to rotate the fan axis around the beam axis. In a preferred embodiment, the beam is spread such that its transverse intensity distribution increases with increasing distance from the beam center so that the area swept by the beam is irradiated with an even intensity.
Abstract:
Disclosed is an electron beam exposure apparatus which includes an objective lens focusing an electron beam, and a dynamic focus correction lens dynamically correcting the focusing by the objective lens. The apparatus comprises a control circuit which, in order to prevent a current variation induced in the objective lens by the dynamic focus correction lens, controls current supplied to the objective lens so as to cancel the current variation induced in the objective lens due to the coil current of the dynamic focus correction lens.
Abstract:
A system for scanning a beam of charged-particles across a target is described which compensates for energy dispersion in the beam. A time-varying magnet with circular pole pieces is used to sweep the beam left to right. Two wedge-shaped magnet dipoles, one on each side of the center line are used to bend the beam parallel to the center line and compensate for beam energy dispersion.