Abstract:
The present invention relates to the use of C-reactive protein, its mutants, metabolites and polypeptides and related compounds thereof for the treatment of various disease states and conditions associated with systemic lupus erythematosus (SLE), including lupus of the skin (discoid), systemic lupus of the joints, lungs and kidneys, hematological conditions including hemolytic anemia and low lymphocyte counts, lymphadenopathy and CNS effects including memory loss, seizures and psychosis, among numerous others as otherwise disclosed herein, hi another aspect of the invention, the reduction in the likelihood that a patient who is at risk for an outbreak of a disease state or condition with systemic lupus erythematosus will have an outbreak is an additional aspect of the present invention.
Abstract:
A lateral flow device includes a porous medium layer having a two-dimensional shape in plan view that is capable of supporting near-constant velocity capillary-driven fluid flow and can be combined with electrodes in a manner to achieve to achieve electrokinetic molecule separation.
Abstract:
According to various embodiments of the present teachings, there is a metal-carbon nanotubes composite and methods of making it. A method of forming a metal-carbon nanotube composite can include providing a plurality of carbon nanotubes and providing a molten metal. The method can also include mixing the plurality of carbon nanotubes with the molten metal to form a mixture of the carbon nanotubes and the molten metal and solidifying the mixture of the carbon nanotubes and the molten metal to form a metal-carbon nanotube composite.
Abstract:
A photoacoustic imaging device includes an array of light sources configured and arranged to illuminate a target region and an array of ultrasonic transducers between the array of light sources and the target region. The array of transducers may be fixedly coupled to the array of light sources, and the array of ultrasonic transducers may be configured and arranged to receive ultrasound transmissions from the target region.
Abstract:
Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.
Abstract:
Exemplary embodiments provide semiconductor devices with a high-quality semiconductor material on a lattice mismatched substrate and methods for their manufacturing using low temperature growth techniques followed by an insulator-capped annealing process. The semiconductor material can have high-quality with a sufficiently low threading dislocation (TD) density, and can be effectively used for integrated circuit applications such as an integration of optically-active materials (e.g., Group III-V materials) with silicon circuitry. In an exemplary embodiment, the high-quality semiconductor material can include one or more ultra-thin high-quality semiconductor epitaxial layers/films/materials having a desired thickness on the lattice mismatched substrate. Each ultra-thin high-quality semiconductor epitaxial layer can be formed by capping a low-temperature grown initial ultra-thin semiconductor material, annealing the capped initial ultra-thin semiconductor material, and removing the capping layer.
Abstract:
Device and method for detecting the presence of known or unknown toxic agents in a fluid sample. Targets in the sample are bound to releasable receptors immobilized in a reaction region of a micro- or nano-fluidic device. The receptors are selected based on their affinity for classes of known toxic agents. The receptors are freed and the bound and unbound receptors separated based on differential electrokinetic mobilities while they travel to a detection device.
Abstract:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
Abstract:
A therapeutic ultrasound device may include a substrate, at least one high power capacitive micromachined ultrasonic transducer, and at least one imager transducer comprising a capacitive micromachined ultrasonic transducer. The at least one high power capacitive micromachined ultrasonic transducer and the imager transducer may be monolithically integrated on the substrate.
Abstract:
This invention relates to a test for detecting a Mycobacterium tuberculosis (tuberculosis or TB) infection in a patient or subject, specifically a diagnostic test, including a breath test, whereby patients are provided a small dose of an isotopically labeled TB drug, Isoniazid (INH) orally or directly to the lungs of the patient or subject. If TB is present, a TB enzyme mycobacterial peroxidase KatG oxidizes the INH; and KatG specific metabolites, in particular, isotopically labeled nitric oxide (NO), nitrites, nitrates, carbon monoxide (CO) or carbon dioxide converted from carbon monoxide of INH cleavage are measured. Other embodiments relate to a diagnostic breath test for detecting TB utilizing isotopically labeled urea (preferably, carbon-13 labeled urea), alone or in combination with isotopically labeled isoniazid (preferably, nitrogen-15 labeled isoniazid), wherein M. tuberculosis organism, if present in the patient or subject's lungs (or other tissues), will metabolize the isotopically labeled urea to isotopically labeled carbon dioxide (CO2) such that a determination of the residence of M. tuberculosis, including residence of an isoniazid resistant strain of M. tuberculosis, may be made.