摘要:
A method for separation of mixtures in fluidic systems through electrokinetic transport by use of nanochannels when the fluidic systems approach the size of an electrical double layer, thereby allowing separation based on charge. The disclosed apparatus comprises a T-chip with a nanochannel section. The method and apparatus are useful for separation of many molecular species, including peptides, proteins, and DNA.
摘要:
The present invention provides a nonostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the subtrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures. A fluidic device for separating particles according to size is provided including a fluidic channel, and a matrix comprising a plurality of protrusions within the fluidic channel, wherein the device provides a driving force to the particles being separated through the fluidic channel; and wherein a flow of the driving force from between the protrusions is divided unequally into a major flow component and a minor flow component, each component flowing between subsequent protrusions in the matrix, such that the average direction of the major flow component is not parallel to the average direction of the driving force, and, when particles are introduced into the matrix, particles having a size less than a predetermined critical size are transported generally in the average direction of the driving force, and particles having a size at least that of the critical size are transported generally in the average direction of the major flow component, thereby separating the particles according to size. Methods for separating particles including steps of separation based on size and affinity are also provided.
摘要:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
摘要:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
摘要:
The present invention provides a matrix comprising an array of nanostructures that exhibit a variation (gradient) in physical properties (such as size or pitch) in at least one direction of the plane containing said array. A method for forming an array having a gradient property is also provided. In addition, a separation method is provided comprising the steps of: providing a matrix comprising an array of nanostructures arranged so that the array has the property of a gradient; and conducting at least one biomolecule separation process to separate biomolecules in a composition containing a plurality of biomolecules using the matrix.
摘要:
The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
摘要:
The invention includes nanochannel devices and methods for using such nanochannel devices for separating molecules, ions and biomolecules. The nanochannel devices have at least one nanochannel through which fluid can move, wherein ionic double layers form in the fluid near walls of the nanochannel and those ionic double layers overlap within the nanochannel. Electrical voltage can be applied to the nanochannel to modify an electrostatic potential in the nanochannel and thereby control movement of ions and biomolecules through the nanochannel. The invention also includes arrays and networks of such nanochannel devices.
摘要:
An analytical device such as a flow cytometer is provided in which a fluid sample flowing through a channel is focused into multiple, parallel particle streams by an acoustic wave field extending across the channel. Each stream is then presented to an individual detector to allow for simultaneous interrogation of the multiple streams and thus, high-throughput analysis of the fluid sample.