Abstract:
In one aspect, fabricating a superconductive integrated circuit with a Josephson junction includes applying oxygen or nitrogen to at least part of a structure formed from an outer superconductive layer to passivate an artifact, if any, left from removing the portion of the outer superconductive layer. In another aspect, a first superconductive layer is deposited, a second superconductive layer is deposited on the first superconductive layer, an oxide layer is formed on the first superconductive layer, a dielectric layer is deposited on the oxide layer, a portion of the dielectric layer is removed, a first portion of the oxide layer is removed, a second oxide portion is formed in place of the first portion of the oxide layer, and a third superconductive layer is deposited on the dielectric layer and the second oxide portion.
Abstract:
Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
Abstract:
Various techniques and apparatus permit fabrication of superconductive circuits. A niobium/aluminum oxide/niobium trilayer may be formed and individual Josephson Junctions (JJs) formed. A protective cap may protect a JJ during fabrication. A hybrid dielectric may be formed. A superconductive integrated circuit may be formed using a subtractive patterning and/or additive patterning. A superconducting metal layer may be deposited by electroplating and/or polished by chemical-mechanical planarization. The thickness of an inner layer dielectric may be controlled by a deposition process. A substrate may include a base of silicon and top layer including aluminum oxide. Depositing of superconducting metal layer may be stopped or paused to allow cooling before completion. Multiple layers may be aligned by patterning an alignment marker in a superconducting metal layer.
Abstract:
A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.
Abstract:
Systems and methods to solve combinatorial problems employ a permutation network which may be modeled after a sorting network where comparators are replaced by switches that controllably determine whether inputs are swapped or are left unchanged at the outputs. A quantum processor may be used to generate permutations by the permutation network by mapping the state of each switch in the network to the state of a respective qubit in the quantum processor. In this way, a quantum computation may explore all possible permutations simultaneously to identify a permutation that satisfies at least one solution criterion. The Travelling Salesman Problem is discussed as an example of a combinatorial problem that may be solved using these systems and methods.
Abstract:
Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryogenic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients. Various components may be pre-cooled, for example via a switchable thermalization system.
Abstract:
Systems and methods for operating digital computer system and a quantum processor to optimize an investment portfolio are described. A set of candidate investments is mapped to the qubits of the quantum processor, where each qubit is programmed with a respective programmable qubit parameter that is representative of the recent performance of the particular candidate investment to which the qubit corresponds. Pair-wise correlations between the candidate investments are mapped to coupling devices of the quantum processor, where each coupling device is programmed with a respective programmable coupling parameter that is representative of the particular correlation to which the coupling device corresponds. The quantum processor is evolved to determine the minimum energy configuration of the qubit states with respect to the programmable qubit and coupling device parameters. The digital computer system interacts with the quantum processor via an investment portfolio optimization module.
Abstract:
A circuit comprising a superconducting qubit and a resonant control system that is characterized by a resonant frequency. The resonant frequency of the control system is a function of a bias current. The circuit further includes a superconducting mechanism having a capacitance or inductance. The superconducting mechanism coherently couples the superconducting qubit to the resonant control system. A method for entangling a quantum state of a first qubit with the quantum state of a second qubit. In the method, a resonant control system, which is capacitively coupled to the first and second qubit, is tuned to a first frequency that corresponds to the energy differential between the lowest two potential energy levels of the first qubit. The resonant control system is then adjusted to a second frequency corresponding to energy differential between the lowest two potential energy levels of the second qubit.
Abstract:
A control system for an array of qubits is disclosed. The control system according to the present invention provides currents and voltages to qubits in the array of qubits in order to perform functions on the qubit. The functions that the control system can perform include read out, initialization, and entanglement. The state of a qubit can be determined by grounding the qubit, applying a current across the qubit, measuring the resulting potential drop across the qubit, and interpreting the potential drop as a state of the qubit. A qubit can be initialized by grounding the qubit and applying a current across the qubit in a selected direction for a time sufficient that the quantum state of the qubit can relax into the selected state. In some embodiments, the qubit can be initialized by grounding the qubit and applying a current across the qubit in a selected direction and then ramping the current to zero in order that the state of the qubit relaxes into the selected state. The states of two qubits can be entangled by coupling the two qubits through a switch. In some embodiments, the switch that is capable of grounding the qubits can also be utilized for entangling selected qubits.