Abstract:
A method for data storage includes providing at least first and second readout schemes for reading storage values from a group of analog memory cells that are connected to respective bit lines. The first readout scheme reads the storage values using a first bit line charging configuration having a first sense time, and the second readout scheme reads the storage values using a second bit line charging configuration having a second sense time, shorter than the first sense time. A condition is evaluated with respect to a read operation that is to be performed over a group of the memory cells. One of the first and second readout schemes is selected responsively to the evaluated condition. The storage values are read from the group of the memory cells using the selected readout scheme.
Abstract:
A method for data storage includes storing first data bits in a set of multi-bit analog memory cells at a first time by programming the memory cells to assume respective first programming levels. Second data bits are stored in the set of memory cells at a second time that is later than the first time by programming the memory cells to assume respective second programming levels that depend on the first programming levels and on the second data bits. A storage strategy is selected responsively to a difference between the first and second times. The storage strategy is applied to at least one group of the data bits, selected from among the first data bits and the second data bits.
Abstract:
A method includes, in a memory with multiple analog memory cells, storing one or more data pages in respective groups of the memory cells using a first programming configuration having a first storage speed. Upon receiving a request to securely erase a data page from the memory, one or more of the memory cells in a group that stores the data page are re-programmed using a second programming configuration having a second storage speed that is faster than the first storage speed.
Abstract:
A method for data storage includes storing first data bits in a set of multi-bit analog memory cells at a first time by programming the memory cells to assume respective first programming levels. Second data bits are stored in the set of memory cells at a second time that is later than the first time by programming the memory cells to assume respective second programming levels that depend on the first programming levels and on the second data bits. A storage strategy is selected responsively to a difference between the first and second times. The storage strategy is applied to at least one group of the data bits, selected from among the first data bits and the second data bits.
Abstract:
A method includes executing a first memory access operation in a memory. A progress indication, which is indicative of a progress of execution of the first memory access operation, is obtained from the memory. Based on the progress indication, a decision is made whether to suspend the execution of the first memory access operation in order to execute a second memory access operation.
Abstract:
A method includes, in a memory device, receiving a command that specifies a peak power consumption that is not to be exceeded by the memory device. A memory of the memory device is configured in accordance with the peak power consumption specified in the command. A data storage operation in the configured memory is performed, while complying with the specified peak power consumption.
Abstract:
A method includes, in a memory system that includes multiple memory units, holding information indicative of respective programming durations of the memory units. Data is stored in a stripe that includes a plurality of the memory units, by programming the memory units in the stripe in an order that is set based on the information.
Abstract:
A method includes storing data values in a group of memory cells that share a common isolating layer, by producing quantities of electrical charge representative of the data values at respective regions of the common isolating layer that are associated with the memory cells. A function, which relates a drift of the electrical charge in a given memory cell in the group to the data values stored in one or more other memory cells in the group, is estimated. The drift is compensated for using the estimated function.
Abstract:
A method for data storage includes receiving in a memory device data for storage in a group of memory cells. The data is stored in the group by performing a Program and Verify (P&V) process, which applies to the memory cells in the group a sequence of programming pulses and compares respective analog values of the memory cells in the group to respective verification thresholds. Immediately following successful completion of the P&V process, a mismatch between the stored data and the received data is detected in the memory device. An error in storage of the data is reported responsively to the mismatch.
Abstract:
A method includes, in a plurality of memory cells that share a common isolation layer and store in the common isolation layer quantities of electrical charge representative of data values, assigning a first group of the memory cells for data storage, and assigning a second group of the memory cells for protecting the electrical charge stored in the first group from retention drift. Data is stored in the memory cells of the first group. Protective quantities of the electrical charge that protect from the retention drift in the memory cells of the first group are stored in the memory cells of the second group.