Abstract:
Aspects of a method and system for controlling data distribution via cellular communications with an integrated femtocell and set-top-box (IFSTB) device are provided. In this regard, a cellular enabled communication device may detect when it is within cellular communication range of a femtocell. Upon detection of the femtocell, the cellular enabled communication device may communicate instructions to a content source instructing the content source to deliver multimedia content to the femtocell. In instances that multimedia content is already being delivered to the cellular enabled communication device prior to the detection, the instructions from the cellular enabled communication device may instruct the content source to redirect the multimedia content to the femtocell. In this regard, the multimedia content may be delivered from the content source to the cellular enabled communication device via the femtocell. The femtocell may deliver at least a portion of the multimedia content to other communication devices.
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
Dynamically splitting a job in wireless system between a processor other remote devices may involve evaluating a job that a wireless mobile communication (WMC) device may be requested to perform. The job may be made of one or more tasks. The WMC device may evaluate by determining the availability of at least one local hardware resource of the wireless mobile communication device in processing the requested job. The WMC device may apportion one or more tasks making up the requested job between the wireless mobile communication device and a remote device. The apportioning may be based on the availability of the at least one local hardware resource.
Abstract:
A communication device within a GNSS group propagates GNSS assistance data to one or more other communication devices in the GNSS group. The GNSS assistance data includes ephemeris received from one or more GNSS satellites and/or predicted ephemeris. As a source device, the communication device generates, and/or acquires from other resources such as a remote location server, the predicted ephemeris. As a destination device, the communication device receives existing GNSS assistance data from a source device and/or other communication devices in the GNSS group. A GNSS position for the communication device and corresponding time information are used to refresh the received GNSS assistance data. In instances where the communication device further acts as a relay device, the refreshed GNSS assistance data is relayed to other communication devices over wired and/or wireless direct device-to-device connections utilizing appropriate communication technologies such as WiFi, Bluetooth and/or Bluetooth low energy.
Abstract:
A mobile communication device includes a motion sensor for generating motion signals in response to motion of the mobile communication device. A motion data generation module generates motion data based on the motion signals. At least one transceiver sends the motion data to a game device in a gaming mode of operation and transceives wireless telephony data with a wireless telephony network in a telephony mode of operation.
Abstract:
A novel solution is presented in which a MAC (Medium Access Controller) is implemented that includes multiple functionality types. This MAC may include functionality supporting communication according to one or more of the IEEE 802.11 WLAN (Wireless Local Area Network) related standards and also to one or more of the standards generated by the IEEE 802.15.3 PAN (Personal Area Network) working group. By providing this dual functionality of a multi-mode WLAN/PAN MAC, a communication device may adaptively change the manner in which it communicates with other communication devices. For example, in an effort to maximize throughput and overall efficiency of communication within a communication system, certain of the various devices may change from using the WLAN related standards to using the PAN related standards, and vice versa, based on any one or more of a variety of operational parameters including system configuration.
Abstract:
A system and method providing location based wireless resource identification in a communication system. Various aspects may comprise determining a location of a communication system (e.g., a multimode communication device). One or more wireless resources may then, for example, be identified based, at least in part, on the determined location. Additionally for example, respective manners of communicating with identified wireless resources may be determined and utilized for communication between the communication system and the identified wireless resources. A communication system may, for example, comprise a location determination module adapted to determine a location of the communication device. A wireless resource identification module may, for example, be adapted to identify one or more wireless resources based, at least in part, on the determined location. Also for example, a communication manager module may be adapted to determine respective manners of communicating with the identified wireless resources.
Abstract:
A broadband gateway may provision services requested in a home network managed and/or serviced by the broadband gateway by a user associated with the broadband gateway, based on determination of criteria related to the requested service. The requested service may comprise obtaining and/or delivering content for consumption by one or more of a plurality of devices serviced by the broadband gateway in the home network. The criteria may comprise device related data, user preference related information, service performance related parameters, payment related information, and/or energy use related information. The broadband gateway may store information associated with the determined criteria. Provisioning requested services may comprise negotiating with at least one remote resource that may support at least a portion of the requested service. The negotiation may comprise brokering and/or arbitrating a plurality of options of remote resources utilized for providing the at least a portion of the requested service.
Abstract:
A video processing system includes a video device that generates a request corresponding to video content. A conditional access module generates a video signal for transmission to the video device during a first time period, and terminates transmission of the video signal when the request is not authenticated during the first time period. In a further embodiment, the conditional access module generates a video signal for unscrambled transmission to the video device during a first time period, terminates the unscrambled transmission of the video signal at the expiration of the first time period, and continues with scrambled transmission of the video signal after the first time period.
Abstract:
Systems and methods are provided that relate to frame formatting supporting mixed two and three dimensional video data communication. For example, frames in frame sequence(s) may be formatted to indicate that a first screen configuration is to be used for displaying first video content, that a second screen configuration is to be used for displaying second video content, and so on. The screen configurations may be different or the same. In another example, the frames in the frame sequence(s) may be formatted to indicate that the first video content is to be displayed at a first region of a screen, that the second video content is to be displayed at a second region of the screen, and so on. The regions of the screen may partially overlap, fully overlap, not overlap, be configured such that one or more regions are within one or more other regions, etc.