摘要:
In a method of manufacturing a semiconductor device, a first gate electrode and a second gate electrode are formed in a first area and a second area of a substrate. Non-crystalline regions are formed in the first area of the substrate adjacent the first gate electrode. A layer having a first stress is formed on the substrate and the first and the second gate electrodes. A mask is formed on a first portion of the layer in the first area of the substrate to expose a second portion of the layer in the second area. The second portion is etched to form a sacrificial spacer on a sidewall of the second gate electrode. The second area of the substrate is partially etched using the mask, the second gate electrode and the sacrificial spacer, to form recesses in the second area of the substrate adjacent the second gate electrode. Patterns having a second stress are formed in the recesses.
摘要:
A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate oxide layer formed on a silicon substrate, at least one nanorod embedded in the gate oxide layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate oxide layer between the source electrode and the drain electrode.
摘要:
In a method of manufacturing a semiconductor device, a first gate electrode and a second gate electrode are formed in a first area and a second area of a substrate. Non-crystalline regions are formed in the first area of the substrate adjacent the first gate electrode. A layer having a first stress is formed on the substrate and the first and the second gate electrodes. A mask is formed on a first portion of the layer in the first area of the substrate to expose a second portion of the layer in the second area. The second portion is etched to form a sacrificial spacer on a sidewall of the second gate electrode. The second area of the substrate is partially etched using the mask, the second gate electrode and the sacrificial spacer, to form recesses in the second area of the substrate adjacent the second gate electrode. Patterns having a second stress are formed in the recesses.
摘要:
Methods of fabricating a semiconductor device are provided, the methods include forming a gate stack on a substrate, forming an insulation layer on the substrate to cover the gate stack, forming a spacer at both side walls of the gate stack by etching the insulation layer, and ion implanting impurities in the spacer or the insulation layer.
摘要:
Semiconductor devices are fabricated using a plasma process with a non-silane gas that includes deuterium, and which may result in improved device reliability and/or other improved device operational characteristics. One such method can include forming a gate oxide layer on a transistor region, which is defined on a substrate, and forming a gate electrode on the gate oxide layer. An etch stop layer is formed on the gate oxide layer and the gate electrode. A plasma process is performed on the interface between the gate oxide layer and the substrate using a non-silane treatment gas including deuterium. An interlayer dielectric layer is formed on the etch stop layer. A bottom metal line is formed on the interlayer dielectric layer.
摘要:
A semiconductor device having a locally buried insulation layer and a method of manufacturing a semiconductor device having the same are provided, in which a gate electrode is formed on a substrate, and oxygen ions are implanted into an active region to form a locally buried insulation layer. An impurity layer is formed on the locally buried insulation layer to form a source/drain. A silicide layer is formed on the source/drain and on the gate electrode. The locally buried insulation layer can prevent junction leakage, decrease junction capacitance and prevent a critical voltage of an MOS transistor from increasing due to body bias, thereby to improve characteristics of the device.
摘要:
Semiconductor devices are fabricated using a plasma process with a non-silane gas that includes deuterium, and which may result in improved device reliability and/or other improved device operational characteristics. One such method can include forming a gate oxide layer on a transistor region, which is defined on a substrate, and forming a gate electrode on the gate oxide layer. An etch stop layer is formed on the gate oxide layer and the gate electrode. A plasma process is performed on the interface between the gate oxide layer and the substrate using a non-silane treatment gas including deuterium. An interlayer dielectric layer is formed on the etch stop layer. A bottom metal line is formed on the interlayer dielectric layer.
摘要:
A semiconductor device having a locally buried insulation layer and a method of manufacturing a semiconductor device having the same are provided, in which a gate electrode is formed on a substrate, and oxygen ions are implanted into an active region to form a locally buried insulation layer. An impurity layer is formed on the locally buried insulation layer to form a source/drain. A silicide layer is formed on the source/drain and on the gate electrode. The locally buried insulation layer can prevent junction leakage, decrease junction capacitance and prevent a critical voltage of an MOS transistor from increasing due to body bias, thereby to improve characteristics of the device.
摘要:
A method of forming an integrated circuit includes selectively forming active channel regions for NMOS and PMOS transistors on a substrate parallel to a crystal orientation thereof and selectively forming source/drain regions of the NMOS transistors with Carbon (C) impurities therein.
摘要:
A method of forming an integrated circuit includes selectively forming active channel regions for NMOS and PMOS transistors on a substrate parallel to a crystal orientation thereof and selectively forming source/drain regions of the NMOS transistors with Carbon (C) impurities therein.