摘要:
The invention relates to a method of manufacturing a semiconductor device (1) for surface mounting. Such a method is known, whereby such a semiconductor device is manufactured in that a semiconductor body with a semiconductor element is mounted on a metal lead frame with metal package leads, after which contact surfaces of the semiconductor element are connected to the package leads by means of bonding wires. It is found that semiconductor devices of small dimensions are difficult to realize by this known method, while in addition the manufacture of integrated circuits with very many package leads is comparatively expensive owing to the many connections which are to be made between the integrated circuits and the package leads. According to the invention, the semiconductor devices are packaged while they are still on a slice of semiconductor material, while the package leads are formed from the semiconductor material. In the method according to the invention, the semiconductor devices are manufactured without the necessity of a lead frame, bonding wires, or metal package leads. Thanks to the IC technologies at the wafer level, such as photolithography, etching, etc., the method according to the invention renders possible semiconductor devices of very small dimensions. In addition, integrated circuits with very many package leads can be manufactured in a simple manner without additional steps being necessary. The method according to the invention is thus comparatively inexpensive.
摘要:
A method of manufacturing a semiconductor device with a semiconductor element which includes a semiconductor zone (19) situated below an electrode (18) and adjoining a surface (5) of a semiconductor body (1), which semiconductor zone substantially does not project outside the electrode (18) in lateral direction. The electrode (18) is here formed on the surface (5) of the semiconductor body (1), after which semiconductor material adjoining the surface (5) and not covered by the electrode (18) is removed by an etching treatment, whereby the position of the semiconductor zone (19) below the electrode (18) is defined. Before the electrode (18) is formed, a surface zone (16) adjoining the surface (5) is formed in the semiconductor body (1) with a depth and a doping such as are desired for the semiconductor zone (19) to be formed below the electrode (18), after which the electrode (18) is formed on this surface zone and, during the etching treatment, the portion of the surface zone (16) not covered by the electrode (18) is etched away through its entire thickness. Conducting materials such as aluminium or aluminium alloys may be used for the electrode (18), i.e. materials which are not resistant to temperatures necessary for forming semiconductor zones through diffusion.
摘要:
An elongate device, such as a catheter, for interventional MRI has one or more passive LC-circuits attached to its distal tip portion for position tracking. The LC-circuits includes an inductor winding and a three-dimensional “trench” capacitor. The LC-circuits are integrated in a piece of silicon. Optical fibers may be included in the device for optical probing of tissue surrounding the distal tip portion.
摘要:
A thermal flow sensor integrated circuit for sensing flow in a channel based on temperature measurements, the integrated circuit having a temperature sensing element (30) on a front side of the integrated circuit arranged to face the channel, and a bond pad (60, 200) coupled electrically to the temperature sensing element, for making electrical contact off the integrated circuit, the bond pad being arranged to face away from the channel. By having the bond pad facing away from the channel, the space needed for the bond pad and any connections to it need not extend beyond the temperature sensing element and get in the way of the channel. Hence the temperature sensing element can be located closer to the channel or in the channel to enable measurements with better response time and sensitivity.
摘要:
The invention relates to a sensor (102) and a control unit (702) for cooperation with the sensor. The sensor (102) serves for measuring a velocity of a fluid (308) flowing through a channel (306). The sensor (102) employs a thermal measuring principle, which measuring principle is robust regarding disturbances on the amount of power dissipated by the heating element (106). A sensor receiver (110) is arranged for receiving an electromagnetic radiation generated by a control transmitter (722) comprised in a control (702) unit for cooperation with the sensor (102). The electromagnetic radiation is employed for powering the heating element (106) which is arranged for heating the fluid. On the basis of a measurement signal generated by a transducer arrangement comprised in the sensor (102), a control actuator (724) controls the velocity of the fluid. For this purpose a sensor transmitter (116) is arranged for transmitting the measurement signal to a control receiver (734).
摘要:
A local power-delivery/data-reception unit is installed within an insertion end of a sealed catheter. The local power-delivery/data-reception unit wirelessly powers a separately sealed sensor that is attached to the insertion end and configured for wirelessly sending a data signal to the local power-delivery/data-reception unit. The catheter may further feature a remote power-delivery/data-reception unit disposed within the handle and configured for wirelessly communicating with the local power-delivery/data-reception unit and a controller for controlling the sensor.
摘要:
A catheter (700, 800, 1206) comprising: a shaft with distal (808, 906, 1004, 208) and proximal ends (1006),wherein the distal end comprises at least one array of capacitive micromachined ultrasound transducers (308, 402, 404, 500, 512, 600, 604, 802, 008) with an adjustable focus for controllably heating a target zone (806, 1014, 1210); and a connector (1012) at the proximal end for supplying the at least one array of capacitive micromachined ultrasound transducers with electrical power and for controlling the adjustable focus.
摘要:
Disclosed is a device for determining the cardiotoxicity of a chemical compound, comprising a substrate (10) carrying a deformable stack (34), said stack being partially detached from the substrate by a cavity (32) allowing an out-of-plane deformation of the stack, said stack comprising a first deformable layer (16), a second deformable layer (20) and a multi-electrode structure (18) sandwiched between the first and second deformable layers, the second deformable layer carrying a pattern of cardiomyocytes (28) adhered thereto; and a liquid container (26) mounted on the substrate for exposing the cardiomyocytes to the chemical compound. A method of manufacturing such a device is also disclosed. The present invention further relates to the use of the device for drug target discovery and/or drug development and a method for developing a disease model for a disease that is caused by or modified by stretching of cells, in particular a cardiac disease model.
摘要:
A beam combiner is disclosed that comprises a planar lightwave circuit that is based on undoped silicon nitride-based surface waveguides, wherein the planar lightwave circuit comprises a plurality of input ports, a mixing region, and an output port, and wherein the mixing region comprises a plurality of directional couplers that are arranged in a tree structure. Embodiments of the present invention are capable of combining a plurality of light signals characterized by disparate wavelengths on irregular spacings with low loss. Further, the present invention enables high-volume, low cost production of beam combiners capable of combining three or more light signals into a single composite output beam.
摘要:
The rollable device of the invention comprises a substrate of an insulating material with apertures extending from a first to a second side. On the first side switching elements are present, as well as interconnect lines and the like, covered by a coating of organic material. On the second side a functional layer is present. Examples of such functional layers include capacitors, antennas and particularly electro-optical layers. Thus, with a rollable display that may include an antenna and a driver circuit is obtained.