Abstract:
A process for removing a nitrogen compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced nitrogen content relative to the vacuum gas oil feed.
Abstract:
An improved method for desulfurizing a fuel stream such as a diesel stream is disclosed which includes generation of a sulfone oil, the desulfurization of the sulfone oil and the recycling of the resulting biphenyl-rich stream and ultra-low sulfur diesel streams. The method includes combining a thiophene-rich diesel stream with an oxidant to oxidize the thiophenes to sulfones to provide a sulfone-rich diesel stream. Sulfone oil is extracted from the sulfone-rich diesel stream to provide sulfone oil and a first low-sulfur diesel stream The low-sulfur diesel stream is recycled. The sulfone-rich oil stream is combined with an aqueous oxidant-containing stream, such as caustic stream, which oxidizes the sulfones to biphenyls and forms sulfite to provide a second low-sulfur diesel stream.
Abstract:
A process has been developed for producing aviation fuel from renewable feedstocks such as plant oils and animals fats and oils. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide n-paraffins having from about 8 to about 24 carbon atoms. At least some of the n-paraffins are isomerized to improve cold flow properties. At least a portion of the paraffins are selectively cracked to provide paraffins meeting specifications for different fuels such as JP-8.
Abstract:
A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
Abstract:
A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
Abstract:
Hydrocarbons such as isobutane and benzenes are alkylated using a solid catalyst in a process which simulates the cocurrent movement of the catalyst bed versus the reactants. This has been found to greatly reduce the rate of catalyst deactivation compared to simulated countercurrent flow. The process may be performed using five or more beds of catalyst, with two undergoing regeneration at any one time. One bed is subjected to a short term liquid-phase regeneration while the other is subjected to long term vapor-phase regeneration. The catalyst preferably contains a metal hydrogenation function effective to selectively hydrogenate C.sub.6 -plus materials trapped on the used catalyst.
Abstract:
It has been found that the aromatic byproducts normally formed in the dehydrogenation of normal paraffins to linear monoolefins are detrimental in the usual processes of aromatic alkylation using the dehydrogenation product mixture as an alkylation feedstock. In particular, when solids are used as the alkylation catalysts with recycle of the unreacted feedstock to the dehydrogenation reactor the aromatic byproducts increase to a level where they exert a significant decrease in the stability of the alkylation catalyst. When the aromatic byproducts are removed in whole or in part alkylation may be performed at a substantially lower temperature, which affords alkylated aromatics whose alkyl portion has greater linearity than that observed at a higher alkylation temperature.
Abstract:
An improved process for the production of alkylated aromatic compounds by paraffin dehydrogenation and aromatic alkylation is disclosed. Aromatic by-products normally formed in paraffin dehydrogenation are selectively removed using at least one aromatics removal zone. Removal of these aromatic by-products significantly reduces the deactivation rate of solid alkylation catalysts. The improved process produces a detergent alkylate product that is significantly more linear than that produced by the prior art process.
Abstract:
A process for converting C.sub.2 to C.sub.6 aliphatic hydrocarbons to aromatics is described. The process uses a catalyst which contains a zeolite, an aluminum phosphate binder and a gallium component. Examples of zeolites which can be used are the ZSM family of zeolites, with ZSM-5 being a specific example. The catalyst is characterized in that it is tolerant to exposure to hydrogen at temperatures of about 500.degree. to about 700.degree. C. The catalyst's tolerance to hydrogen exposure is the result of treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours, followed by calcination.
Abstract:
This invention relates to a process for reactivating a dehydrocyclodimerization catalyst. Dehydrocyclodimerization catalysts which contain an aluminum phosphate binder can be deactivated when they are exposed to hydrogen at temperatures above 500.degree. C. The instant process restores substantially all of the catalyst's lost activity. The process involves treating the catalyst with an aqueous solution of a weakly acidic ammonium salt or a dilute acid solution at a temperature of about 50.degree. to about 100.degree. C. for a time of about 1 to about 48 hours. An ammonium nitrate solution is preferred. Next the catalyst is calcined at a temperature of about 500.degree. to about 700.degree. C. for a time of about 1 to about 15 hours to provide a reactivated catalyst. The catalyst can be reactivated several times using this process.