摘要:
A method for manufacturing a multi-level interconnection structure in a semiconductor device includes the steps of consecutively forming an anti-diffusion film and an interlevel dielectric film on a first level Cu layer, forming first through third hard mask films on the interlevel dielectric film, etching the interlevel dielectric film by using the first hard mask to form first through-holes, etching the first and second hard mask films and a top portion of the interlevel dielectric film by using the third hard mask film to form trenches, and etching the anti-diffusion film to form through-holes. The first hard mask film protects the interlevel dielectric film during removal of the second and third hard mask films.
摘要:
A first HSQ film composed of a Si—O-based film with a low dielectric constant is formed on a first wiring via a protective insulation film, and the surface of this first HSQ film is reformed to form a first SRO layer. Then, a second HSQ film is formed on this first SRO layer, and the surface of the second HSQ film is reformed to form a second SRO layer. Next, a via-hole is formed within a predetermined region, which reaches the protective insulation film on the first wiring. Then, wiring trenches forming a second wiring are formed within predetermined regions of the second HSQ film and the second SRO film while using the first SRO film as an etching stopper film. Thereafter, the protective insulation film at the bottom of the via-hole is etched and removed, and the wiring trenches and the via-hole are embedded with a conductive film. Then, the conductive film on the second SRO layer is removed while using the second SRO layer as a CMP stopper film.
摘要:
A method for manufacturing a multi-level interconnection structure in a semiconductor device includes the steps of consecutively forming an anti-diffusion film and an interlevel dielectric film on a first level Cu layer, forming first through third hard mask films on the interlevel dielectric film, etching the interlevel dielectric film by using the first hard mask to form first through-holes, etching the first and second hard mask films and a top portion of the interlevel dielectric film by using the third hard mask film to form trenches, and etching the anti-diffusion film to form through-holes. The first hard mask film protects the interlevel dielectric film during removal of the second and third hard mask films.
摘要:
Semiconductor wafers on a boat are inserted into a furnace chamber of a vertical oxidation/diffusion furnace, and helium gas and argon gas are injected into the furnace chamber during the insertion of the boat, so that the light helium gas fills the furnace chamber without residual air and the heavy argon gas pushes out the residual air from gaps between the semiconductor wafers.
摘要:
Described in the present invention is a semiconductor device in which a plurality of interconnect lines are disposed, through an insulating layer, on the same layer above a semiconductor substrate having a semiconductor element; a first interlevel insulator is formed selectively in a narrowly-spaced region between adjacent interconnect lines; a second interlevel insulator is formed in a widely-spaced region between said adjacent interconnect lines, and the first interlevel insulator has a smaller dielectric constant than the second interlevel insulator. According to such a constitution, strength and reliability can be heightened and performance can be improved easily even in a miniaturized interconnect structure.
摘要:
On manufacturing a semiconductor device, preparation is made of an organic layer (101) of a resin which has a relative dielectric constant between 1.8 and 3.5, both inclusive, and which is selected from the group consisting of a polyimide resin and a fluororesin. The organic layer has a slit. A first metal (105) is buried in the slit. A silicon oxide layer (106) containing fluorine is formed on the organic layer so that the silicon oxide layer has a hole on the first metal. A second metal (107) is buried in the hole. Preferably, an additional organic layer (101') of the resin is formed on the silicon oxide layer so that the additional organic layer has an additional slit on the second metal. In this case, a first additional metal (105') is buried in the additional slit. In addition, an additional silicon oxide layer (106') containing fluorine may be formed on the additional organic layer so that the additional silicon oxide layer has an additional hole on the first additional metal. In this event, a second additional metal (107') is buried in the additional hole.
摘要:
A base insulator film comprised of a silicon oxide film or the like is formed on the surface of a silicon substrate, and a non-doped polysilicon film (resistor layer) is selectively formed on the base insulator film by thermal CVD. A first silicon oxide film and a BPSG film are sequentially formed on the entire surfaces of the base insulator film and the polysilicon film. Then, two openings which reach the polysilicon film are formed in the BPSG film and the first silicon oxide film, and an impurity is selectively doped into the surface of the polysilicon film through those openings. As a result, a high-resistance section is formed in the polysilicon film between the two openings. Then, the openings are filled with metal layers, and then metal wires to be connected to the metal layers are formed on the surface of the BPSG film. Then, a second silicon oxide film is formed on the entire surfaces of the BPSG film and the metal wires by bias ECR (Electron Cyclotron Resonance)--CVD having a high electric field to coat the metal wires and the like. The high electric field ECR-CVD deposition increases the hydrogen atomic concentration of the polysilicon resistor layer so as to stabilize the resistance against diffusion of lower atomic concentrations of incidental hydrogen atoms from various other interlayer insulating layers.
摘要:
A vertical low pressure CVD (Chemical Vapor Deposition) apparatus includes a first and a second annular nozzle assigned to silane gas and an oxidizing gas, respectively. The first nozzle adjoins the lowermost portion of a boat loaded with a stack of wafers. The two nozzles are spaced from each other and have a plurality of holes arranged in a similar fashion. The oxidizing gas, jetted from the second nozzle, reaches the first nozzle over the same distance and, therefore, in the same amount as measured around the first nozzle. As a result, the two kinds of gas are mixed in a uniform ratio. The distance between the two nozzles may be changed for different types of oxidizing gases to uniformly mix the oxidizing gas with the silane gas without an early reaction.
摘要:
A first wiring is disposed over a semiconductor substrate. A first via is disposed over the first wiring. Further, the bottom surface of the first via is in contact with the first wiring. A first insulation layer is disposed over the semiconductor substrate, and is in contact with at least the top surface of the first wiring and the side surface of the first via. At least a part of each side surface of the first wiring and the first via cuts off each metal crystal grain.
摘要:
An interconnect is provided in a first insulating layer and the upper surface of the interconnect is higher than the upper surface of the first insulating layer. An air gap is disposed between the interconnect and the first insulating layer. A second insulating layer is formed at least over the first insulating layer and the air gap. The second insulating layer does not cover the interconnect. An etching stopper film is formed at least over the second insulating layer. The etching stopper film is formed over the second insulating layer and the interconnect. A third insulating layer is formed over the etching stopper film. A via is provided in the third insulating layer so as to be connected to the interconnect.