Abstract:
Aminoalcohol lipidoids are prepared by reacting an amine with an epoxide-terminated compound are described. Methods of preparing aminoalcohol lipidoids from commercially available starting materials are also provided. Aminoalcohol lipidoids may be prepared from racemic or stereochemically pure epoxides. Aminoalcohol lipidoids or salts forms thereof are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the amino moiety of these aminoalcohol lipidoid compounds, they are particularly suited for the delivery of polynucleotides. Complexes, micelles, liposomes or particles containing the inventive lipidoids and polynucleotide have been prepared. The inventive lipidoids may also be used in preparing microparticles for drug delivery. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
Abstract:
A method includes producing libraries of nanoparticles having highly controlled properties, which can be formed by mixing together two or more macromolecules in different ratios. One or more of the macromolecules may be a polymeric conjugate of a moiety to a biocompatible polymer. The nanoparticle may contain a drug. The moiety may include a polypeptide or a polynucleotide, such as an aptamer. The moiety may be a targeting moiety, an imaging moiety, a chelating moiety, a charged moiety, or a therapeutic moiety. Another aspect is directed to systems and methods of producing such polymeric conjugates. In some embodiments, a solution containing a polymer is contacted with a liquid, such as an immiscible liquid, to form nanoparticles containing the polymeric conjugate. Other methods use such libraries, use or administer such polymeric conjugates, or promote the use of such polymeric conjugates. Kits involving such polymeric conjugates are also described.
Abstract:
The present invention provides a drug delivery system for targeted delivery of therapeutic agent-containing particles to tissues, cells, and intracellular compartments. The invention provides targeted particles comprising a particle, one or more targeting moieties, and one or more therapeutic agents to be delivered and pharmaceutical compositions comprising inventive targeted particles. The present invention provides methods of designing, manufacturing, and using inventive targeted particles and pharmaceutical compositions thereof.
Abstract:
Drug-eluting devices and methods for the treatment of tumors of the pancreas, biliary system, gallbladder, liver, small bowel, or colon, are provided. Methods include deploying a drug-eluting device having a film which includes a mixture of a degradable polymer and a chemotherapeutic drug, wherein the film has a thickness from about 2 μm to about 1000 μm, into a tissue site and releasing a therapeutically effective amount of the chemotherapeutic drug from the film to treat the tumor, wherein the release of the therapeutically effective amount of the drug from the film is controlled by in vivo degradation of the polymer at the tissue site.
Abstract:
Poly(β-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
Abstract:
The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
Abstract:
Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the residence articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the residence article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the residence article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the residence articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the residence article includes dimensions configured for transesophageal retrieval. In some cases, the residence articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
Abstract:
The present disclosure provides compositions, methods, and kits that enable the in situ growth of polymers on or within a subject. In some aspects, the monomer, dopamine, polymerizes in vivo to form a polymer on a tissue. In additional aspects, the compositions, methods, and kits are useful for treating or preventing a disease or disorder.
Abstract:
Provided herein are methods of selectively delivering an agent to a cell, comprising contacting the cell with a composition comprising an agent and lipids selected from: (a) an ionizable amino lipid, (b) a sterol, (c) a phospholipid, and (d) a PEG-lipid. The methods are selective for delivery to microglia over other neuroglia, such as astrocytes.
Abstract:
Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.