Abstract:
A chamber support plate of an inkjet head is formed as a member different from a housing. The chamber support plate is formed with a plurality of grooves at high density by a dicing saw or the like. Piezoelectric elements are inserted into the grooves and adhered to a chamber plate. The plurality of grooves define comb teeth portions, which support the chamber plate at positions between adjacent piezoelectric elements.
Abstract:
To coat a solution on both surfaces continuously in such a state that an edge portion of the substrate is so constructed as to be fixed, and the substrate is attached to a substrate fixing frame having a positioning mechanism.
Abstract:
In an ink ejection type recording device in which expansion of bubble ejects an ink droplet from a nozzle toward a recording medium, a heater formed in an ink channel is applied with a pulse of voltage by a driver circuit. The pulse of voltage is determined so that the surface of the heater in direct contact with the water-based ink is rapidly heated to a temperature causing to invoke caviar-wise nucleation of the ink that is in direct contact with the surface of the heater. Expanding bubbles resulting from the caviar-wise nucleation ejects an ink droplet from the nozzle, wherein the heater is heated at a heating speed in a range from 1.times.10.sup.8 .degree. C./sec to 5.times.10.sup.8 .degree.C./sec, and the surface of the heater is heated up from a room temperature to a temperature substantially equal to 320 C within a period of time ranging from 0.6 to 3 .mu.sec. By heating the heater under these conditions, the ink in contact with the heater starts boiling with a high boiling pressure, the generated bubble has a large volume, and thus the bubble can generate pressure sufficiently large to eject the ink droplet.
Abstract:
In an ink jet printer, a belt-type preheating unit 2 pressingly heats a recording sheet 6 while transporting the recording sheet in a transport direction B on a belt. A suction transport device 3 is positioned downstream of the belt-type preheating unit 2 in the transport direction B. The suction transport means transports, on its transport belt, the recording sheet 6 heated by the belt-type preheating unit 2 in the transport direction B while fixing the recording sheet onto the transport belt by a vacuum suction. An ink jet print head, positioned confronting the suction transport device 3, records images by ejecting water-based ink onto the recording sheet which is being transported by the suction transport device.
Abstract:
A plasma-etching electrode plate in the form of flat glassy carbon plate is characterized by a flatness with a warp smaller than 0.3 mm. This flatness permits the electrode plate to have a uniform surface temperature distribution which contributes to uniform etching on semiconductor wafers. The electrode plate is a glassy carbon plate obtained from one or more thermosetting resins having a carbon yield higher than 20%.
Abstract:
An ink ejection printer includes an ink channel filled with ink, a nozzle which brings the ink channel into fluid connection with an outside atmosphere, and a thermal resistor formed in the ink channel near the nozzle. The thermal resistor received a pulse of voltage, whereupon the thermal resistor rapidly heats so that a portion of the ink in the ink channel is rapidly vaporized by subcool boiling, which is caused by swing nucleation, to produce a bubble, expansion of the bubble ejecting an ink droplet from the nozzle. With the thermal resistor, boiling starts within 2 .mu.S after application of the pulse of voltage begins. The pulse of voltage is applied to the thermal resistor for a duration of 3 .mu.S or less. The bubble generated by application of the pulse of voltage to the thermal resistor disappears without the thermal resistor generating secondary bubbles. The bubble generated by application of the pulse of voltage of the thermal resistor disappears within 11 .mu.S after application of the pulse. Energy required to generate the bubble is 4 .mu.J/50.times.50 .mu.m.sup.2 or less.
Abstract:
An electro-mechanical transducer element is disclosed. The electro-mechanical transducer element includes a first electrode formed on a substrate; an electro-mechanical transducer film formed on at least a part of the first electrode; and a second electrode formed on at least a part of the electro-mechanical transducer film. In at least one cross section of the electro-mechanical transducer film, a film thickness distribution shape is convex to the second electrode side.
Abstract:
Disclosed is a method of fabricating an electromechanical transducer film. The method includes treating a surface of a first electrode to be liquid-repellent, the first electrode being formed on one surface of a substrate, irradiating the surface of the first liquid-repellent electrode with an energy ray while moving an irradiation position in accordance with a shape of the electromechanical transducer film to be formed and a shape of an alignment mark to be formed, and forming the alignment mark by applying an application liquid to an area including a portion irradiated with the energy ray in accordance with the shape of the alignment mark in the irradiating step, the application liquid being applied by an inkjet method.
Abstract:
A thin film forming apparatus which automatically forms, on an electrode layer formed on a substrate, a functional thin film which is crystallized from a precursor layer is disclosed, including a water-repellant film forming unit which forms, on a region other than a region on which is to be formed the functional thin film on the electrode layer, a water-repellant film which includes a self-assembled monolayer; an inkjet coating unit which coats, on the region on which is to be formed the functional thin film on the electrode layer, the precursor layer by an inkjet method; and a controller which controls, to within a predetermined time, a time from forming the water-repellant film with the water-repellant film forming unit to coating the precursor layer with the inkjet coating unit.
Abstract:
An electronic device includes a substrate; and a plurality of thin-film elements formed on the substrate. Further, the thin-film element includes a thin-film section having a function selected from a group including piezoelectric effect, inverse piezoelectric effect, charge storage, semiconductivity, and conductivity, and the plurality of thin-film elements includes the thin-film sections having two or more different functions.