Abstract:
A micromechanical detection structure includes a substrate of semiconductor material and a driving-mass arrangement is coupled to a set of driving electrodes and driven in a driving movement following upon biasing of the set of driving electrodes. A first anchorage unit is coupled to the driving-mass arrangement for elastically coupling the driving-mass arrangement to the substrate at first anchorages. A driven-mass arrangement is elastically coupled to the driving-mass arrangement by a coupling unit and designed to be driven by the driving movement. A second anchorage unit is coupled to the driven-mass arrangement for elastically coupling the driven-mass arrangement to the substrate at second anchorages. Following upon the driving movement, the resultant of the forces and of the torques exerted on the substrate at the first and second anchorages is substantially zero.
Abstract:
A MEMS gyroscope, wherein a suspended mass is mobile with respect to a supporting structure. The mobile mass is affected by quadrature error caused by a quadrature moment; a driving structure is coupled to the suspended mass for controlling the movement of the mobile mass in a driving direction at a driving frequency. Motion-sensing electrodes, coupled to the mobile mass, detect the movement of the mobile mass in the sensing direction and quadrature-compensation electrodes are coupled to the mobile mass to generate a compensation moment opposite to the quadrature moment. The gyroscope is configured to bias the quadrature-compensation electrodes with a compensation voltage so that the difference between the resonance frequency of the mobile mass and the driving frequency has a preset frequency-mismatch value.
Abstract:
A MEMS acoustic transducer provided with: a substrate of semiconductor material, having a back surface and a front surface opposite with respect to a vertical direction; a first cavity formed within the substrate, which extends from the back surface to the front surface; a membrane which is arranged at the upper surface, suspended above the first cavity and anchored along a perimeter thereof to the substrate; and a combfingered electrode arrangement including a number of mobile electrodes coupled to the membrane and a number of fixed electrodes coupled to the substrate and facing respective mobile electrodes for forming a sensing capacitor, wherein a deformation of the membrane as a result of incident acoustic pressure waves causes a capacitive variation of the sensing capacitor. In particular, the combfingered electrode arrangement lies vertically with respect to the membrane and extends parallel thereto.
Abstract:
A microelectromechanical device, in particular a non-volatile memory module or a relay, comprising: a mobile body including a top region and a bottom region; top electrodes facing the top region; and bottom electrodes, facing the bottom region. The mobile body is, in a resting condition, at a distance from the electrodes. The latter can be biased for generating a movement of the mobile body for causing a direct contact of the top region with the top electrodes and, in a different operating condition, a direct contact of the bottom region with the bottom electrodes. In the absence of biasing, molecular-attraction forces maintain in stable mutual contact the top region and the top electrodes or, alternatively, the bottom region and the bottom electrodes.
Abstract:
A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Abstract:
A gyroscope includes a substrate, a first structure, a second structure and a third structure elastically coupled to the substrate and movable along a first axis. The first and second structure are arranged at opposite sides of the third structure with respect to the first axis A driving system is configured to oscillate the first and second structure along the first axis in phase with one another and in phase opposition with the third structure. The first, second and third structure are provided with respective sets of sensing electrodes, configured to be displaced along a second axis perpendicular to the first axis in response to rotations of the substrate about a third axis perpendicular to the first axis and to the second axis.
Abstract:
A microelectromechanical gyroscope, includes: a supporting body; a first movable mass and a second movable mass, which are oscillatable according to a first driving axis and tiltable about respective a first and second sensing axes and are symmetrically arranged with respect to a center of symmetry; first sensing electrodes and a second sensing electrodes associated with the first and second movable masses and arranged on the supporting body symmetrically with respect to the first and second sensing axis, the first and second movable masses being capacitively coupled to the respective first sensing electrode and to the respective second sensing electrode, a bridge element elastically coupled to respective inner ends of the first movable mass and of the second movable mass and coupled to the supporting body so as to be tiltable about an axis transverse to the first driving axis.
Abstract:
A microelectromechanical sensor that in one embodiment includes a supporting structure, having a substrate and electrode structures anchored to the substrate; and a sensing mass, movable with respect to the supporting structure so that a distance between the sensing mass and the substrate is variable. The sensing mass is provided with movable electrodes capacitively coupled to the electrode structures. Each electrode structure comprises a first fixed electrode and a second fixed electrode mutually insulated by a dielectric region and arranged in succession in a direction substantially perpendicular to a face of the substrate.