摘要:
An apparatus, a method, and a computer readable recording medium thereof to update filter tap coefficients of an equalizer include a defect signal detection unit and a coefficient updating unit. The defect signal detection unit receives a sampled input signal reflected from an optical disc and/or a track jump signal, detects whether the input signal and/or the track jump signal are defective, and outputs an update stop signal indicative thereof. The coefficient updating unit stops the updating of the filter tap coefficients in response to the update stop signal and outputs current filter tap coefficients.
摘要:
Provided are a nonvolatile memory device, a layer deposition apparatus and a method of fabricating a nonvolatile memory device using the same. The apparatus may include a chamber capable of holding a substrate, a particle-discharging target discharging particles toward the substrate, and a first ion beam gun accelerating a first plurality of ions and irradiating the accelerated ions toward the substrate. The method of fabricating a nonvolatile memory device may include discharging particles from a target toward a substrate, accelerating and irradiating a first plurality of ions toward the substrate, forming a reaction product by reacting the discharged particles and the accelerated and irradiated first plurality of ions, and forming a data storage layer having a deposited layer on the substrate. The nonvolatile memory device may include a data storage layer including a transition metal oxide layer formed by reacting discharged transition metal particles and accelerated and irradiated oxygen ions.
摘要:
A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode. The method includes: forming a gate structure and an active region on a semiconductor substrate; forming an interlayer dielectric film on the resultant semiconductor substrate; forming a plug in the interlayer dielectric film to electrically connect with the active region; forming a mold oxidation layer on the plug and the interlayer dielectric film; patterning the mold oxidation layer with a predetermined pattern and forming a lower electrode of material containing aluminum on the plug; and sequentially forming a dielectric layer and an upper electrode on the lower electrode.
摘要:
Provided is a method for fabricating a metal oxide thin film in which a metal oxide generated by a chemical reaction between a first reactant and a second reactant is deposited on the surface of a substrate as a thin film. The method involves introducing a first reactant containing a metal-organic compound into a reaction chamber including a substrate; and introducing a second reactant containing alcohol. Direct oxidation of a substrate or a deposition surface is suppressed by a reactant gas during the deposition process, as it uses alcohol vapor including no radical oxygen as a reactant gas for the deposition of a thin film. Also, since the thin film is deposited by the thermal decomposition, which is caused by the chemical reaction between the alcohol vapor and a precursor, the deposition rate is fast. Particularly, the deposition rate is also fast when a metal-organic complex with β-diketone ligands is used as a precursor. Further, a thin film with low leakage current can be obtained as the metal oxide thin film fabrication method using a chemical vapor deposition or atomic layer deposition method grows a thin film with fine microstructure.
摘要:
An alignment system used in nano-imprint lithography and a nano-imprint lithography method using the alignment system are provided. The alignment system includes: a plurality of electron emission devices, which are provided in the mold and emit electrons; and a plurality of electrodes, which are provided to face the electron emission devices and at which the electrons emitted from the electron emission devices arrive. The mold and the substrate are aligned with each other by maximizing the amount of current in each of the electrodes.
摘要:
Provided are a Ge precursor for low temperature deposition containing Ge, N, and Si, a GST thin layer doped with N and Si formed using the same, a memory device including the GST thin layer doped with N and Si, and a method of manufacturing the GST thin layer. The Ge precursor for low temperature deposition contains N and Si such that the temperature at which the Ge precursor is deposited to form a thin layer, particularly, the GST thin layer doped with N and Si, can be low. In addition, during the low temperature deposition, H2 plasma can be used. The GST phase-change layer doped with N and Si formed from the Ge precursor for low temperature deposition has a low reset current. Therefore, a memory device including the GST phase-change layer doped with N and Si can be highly integrated, have a high capacity, and can be operated at a high speed.
摘要翻译:提供了包含Ge,N和Si的低温沉积的Ge前体,掺杂有使用其形成的N和Si的GST薄层,包括掺杂有N和Si的GST薄层的存储器件,以及制造方法 GST薄层。 用于低温沉积的Ge前体包含N和Si,使得Ge前体沉积形成薄层的温度,特别是掺杂有N和Si的GST薄层的温度可以低。 此外,在低温沉积期间,可以使用H 2 O 3等离子体。 掺杂有由Ge前体形成的用于低温沉积的N和Si的GST相变层具有低复位电流。 因此,包含掺杂有N和Si的GST相变层的存储器件可以高度集成,具有高容量,并且可以高速运行。
摘要:
In a magnetic random access memory (MRAM) having a transistor and a magnetic tunneling junction (MTJ) layer in a unit cell, the MTJ layer includes a lower magnetic layer, an oxidation preventing layer, a tunneling oxide layer, and an upper magnetic layer, which are sequentially stacked. The tunneling oxide layer may be formed using an atomic layer deposition (ALD) method. At least the oxidation preventing layer may be formed using a method other than the ALD method.
摘要:
A capacitor and a method of fabricating the capacitor are provided herein. The capacitor can be formed by forming two or more dielectric layers and a lower electrode, wherein at least one of the two or more dielectric layers is formed before the lower electrode is formed.
摘要:
A method of manufacturing an inorganic nanotube using a carbon nanotube (CNT) as a template, includes preparing a template on which a CNT or a CNT array is formed, forming an inorganic thin film on the CNT by depositing an inorganic material on the template using atomic layer deposition (ALD), and removing the CNT to obtain an inorganic nanotube or an inorganic nanotube array, respectively.
摘要:
Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device may include a substrate and a plurality of semiconductor pillars on the substrate. A plurality of control gate electrodes may be stacked on the substrate and intersecting the plurality of semiconductor pillars. A plurality of dummy electrodes may be stacked adjacent to the plurality of control gate electrodes on the substrate, the plurality of dummy electrodes being spaced apart from the plurality of control gate electrodes. A plurality of via plugs may be connected to the plurality of control gate electrodes. A plurality of wordlines may be on the plurality of via plugs. Each of the plurality of via plugs may penetrate a corresponding one of the plurality of control gate electrodes and at least one of the plurality of dummy electrodes.