Abstract:
A sealed ceramic package for a semiconductor device and a method of fabricating the same are disclosed. In one embodiment, a ceramic substrate has a set of cavities each having an opening at a substrate top surface. A semiconductor die is disposed within each cavity, and is electrically connected through the substrate to input/output terminals of the substrate. The substrate has a metal film on the top surface thereof around the opening of the respective the cavities. A metal lid panel, covering the cavity openings, is soldered to the metal film by reflowing a layer of solder disposed over a lid panel bottom surface, thereby sealing the die in each cavity. Subsequently, individual packages are singulated from the ceramic substrate.
Abstract:
A window is mounted directly to an upper surface of a micromirror device chip. More particularly, the window is mounted above a micromirror device area on the upper surface of the micromirror device chip by a bead. The window in combination with the bead form a hermetic enclosure about the micromirror device area thus protecting the micromirror device area from moisture and contamination.
Abstract:
To form an image sensor package, a window is mounted above an active area on an upper surface of an image sensor. A noncritical region of the upper surface of the image sensor is between the active area and bond pads of the image sensor. A lower surface of a step up ring is mounted above the noncritical region of the upper surface of the image sensor. An upper surface of the step up ring includes a plurality of electrically conductive traces. Bond wires are formed between the bond pads of the image sensor and the electrically conductive traces on the upper surface of the step up ring. The step up ring is mounted so that the window is located in or adjacent a central aperture of the step up ring.
Abstract:
A method includes adhesively mounting an adhesive lower surface of a protective layer to a top surface of a die such as an image sensor die or a micromachine die. A special-purpose area on the top surface of the die is contacted and protected by said protective layer. The protective layer includes a polymerizable material, which includes the adhesive lower surface. The method further includes rendering the adhesive lower surface to be nonadhesive. The adhesive lower surface is rendered nonadhesive by polymerizing the polymerizable material of the protective layer with ultraviolet radiation.
Abstract:
A structure for protecting a special-purpose area of an image sensor die or a micromachine die during singulation of the die from a wafer includes a protective layer that has a polymerized upper zone and an unpolymerized lower zone. At least part of the unpolymerized lower zone has an adhesive lower surface that is attached to a top surface of the wafer so that the protective layer overlies and protects the special-purpose area during either frontside or backside sawing. The unpolymerized lower zone is then entirely polymerized to make the adhesive lower surface nonadhesive to facilitate removal of the protective layer from the die.
Abstract:
An image sensor package includes a substrate having a central aperture. Electrically conductive traces on a lower surface of the substrate include tabs projecting below and under hanging the central aperture. An image sensor is flip chip mounted to the tabs and thus supported in the central aperture by the tabs. By mounting the image sensor in the central aperture, the resulting image sensor package is relatively thin.
Abstract:
A mounting for a package containing a semiconductor chip is disclosed, along with methods of making such a mounting. The mounting includes a substrate having a mounting surface with conductive traces thereon, and an aperture extending through the substrate. The package includes a base, such as a leadframe or a laminate sheet, and input/output terminals. A chip is on a first side of the base and is electrically connected (directly or indirectly) to the input/output terminals. A cap, which may be a molded encapsulant, is provided on the first side of the base over the chip. The package is mounted on the substrate so that the cap is in the aperture, and a peripheral portion of the first side of the base is over the mounting surface so as to support the package in the aperture and allow the input/output terminals of the package to be juxtaposed with to the circuit patterns of the mounting surface. Because the cap is within the aperture, a height of the package above the mounting surface is minimized.
Abstract:
A plurality of pressure sensor dice are attached to an array of pressure sensor die attach sites located on a substrate. The pressure sensor dice are then electrically connected to the pressure sensor die attach sites using standard wire bond techniques. The resulting array of pressure sensor sub-assemblies is then molded, using a mold tool that closes on three sides of the substrate so that a cavity is formed that is open on the fourth side. A portion of the outer surface of the micro-machine element of each pressure sensor die is left exposed at the bottom of a cavity or hole in the encapsulant. After molding, the exposed outer surface of the micro-machine element is covered with a pressure coupling gel applied in the cavity. The resulting array of packaged pressure sensors are then sigulated using well know sawing or laser techniques or by snapping a specially formed snap array.
Abstract:
Semiconductor packages and other electronic assemblies having an active heat sink are disclosed, along with methods of making the same. The active heat sink includes a cavity partially filled with a heat activated liquid. Heat generated during operation of a chip boils the heat activated liquid. The vapor condenses on an inner surface of the active heat sink and transfers heat to an outer, possibly finned, surface exposed to ambient to dissipate heat. In some embodiments, the active heat sink may be a closed vessel mounted on the chip. In some embodiments, the vessel of the active heat sink is formed from a die pad of a leadframe substrate. The die pad includes a recess that forms the active heat sink cavity when bonded to the back surface of the chip. The heat activated liquid directly contacts the back surface of the chip in these embodiments.
Abstract:
A plurality of pressure sensor dice are attached to an array of pressure sensor die attach sites located on a substrate. The pressure sensor dice are then electrically connected to the pressure sensor die attach sites using standard wire bond techniques. The resulting array of pressure sensor sub-assemblies is then molded, using a mold tool which closes on three sides of the substrate so that a cavity is formed that is open on the fourth side. A portion of the outer surface of the micro-machine element of each pressure sensor die is left exposed at the bottom of a cavity or hole in the encapsulant. After molding, the exposed outer surface of the micro-machine element is covered with a pressure coupling gel applied in the cavity. The resulting array of packaged pressure sensors are then sigulated using well know sawing or laser techniques or by snapping a specially formed snap array.