摘要:
A metric generation scheme for use in OFDM receivers. In a preferred embodiment, an OFDM receiver of the invention includes a dynamic quantizer to compress a series of channel-state information values. Also, a bit de-interleaver is provided to de-interleave a series of symbol-based data inverse to interleaving operations at a transmitter end. The de-interleaved symbol-based data is further compressed by another dynamic quantizer to yield a complex signal according to a constellation scheme. Then a metric generator calculates a bit metric of a zero group and a bit metric of a one group for each received bit in which the constellation is divided into the one group and the zero group for each bit location.
摘要:
A semiconductor device includes a semiconductor substrate; a gate stack overlying the substrate, a spacer formed on sidewalls of the gate stack, and a protection layer overlying the gate stack for filling at least a portion of a space surrounded by the spacer and the top surface of the gate stack. A top surface of the spacer is higher than a top surface of the gate stack.
摘要:
A method of forming a SONOS gate structure. The method includes forming a gate pattern with sidewalls on a substrate, wherein the gate pattern includes a gate dielectric layer patterned on the substrate and a gate electrode patterned on the gate dielectric layer, forming a first oxide layer on the gate pattern and the substrate; etching back the first oxide layer to expose the substrate and the top of the gate electrode, leaving oxide spacers along the sidewalls of the gate pattern respectively; forming a second oxide layer on the substrate and the oxide spacers; and forming trapping dielectric spacers on the second oxide layer adjacent to the sidewalls of the gate pattern respectively.
摘要:
A method of fabricating a semiconductor device includes providing a substrate having a fin disposed thereon. A gate structure is formed on the fin. The gate structure interfaces at least two sides of the fin. A stress film is formed on the substrate including on the fin. The substrate including the stress film is annealed. The annealing provides a tensile strain in a channel region of the fin. For example, a compressive strain in the stress film may be transferred to form a tensile stress in the channel region of the fin.
摘要:
A semiconductor device and method of fabricating thereof is described that includes a substrate having a fin with a top surface and a first and second lateral sidewall. A hard mask layer may be formed on the top surface of the fin (e.g., providing a dual-gate device). A gate dielectric layer and work function metal layer are formed on the first and second lateral sidewalls of the fin. A silicide layer is formed on the work function metal layer on the first and the second lateral sidewalls of the fin. The silicide layer may be a fully-silicided layer and may provide a stress to the channel region of the device disposed in the fin.
摘要:
A method of fabricating a semiconductor device is provided which includes providing a substrate. A material layer is formed over the substrate. A polymer layer is formed over the material layer. A nano-sized feature is self-assembled using a portion of the polymer layer. The substrate is patterned using the nano-sized feature.
摘要:
The present disclosure provides a method includes forming a multi-fin device. The method includes forming a patterned mask layer on a semiconductor substrate. The patterned mask layer includes a first opening having a first width W1 and a second opening having a second width W2 less than the first width. The patterned mask layer defines a multi-fin device region and an inter-device region, wherein the inter-device region is aligned with the first opening; and the multi-fin device region includes at least one intra-device region being aligned with the second opening. The method further includes forming a material layer on the semiconductor substrate and the patterned mask layer, wherein the material layer substantially fills in the second opening; performing a first etching process self-aligned to remove the material layer within the first opening such that the semiconductor substrate within the first opening is exposed; performing a second etching process to etch the semiconductor substrate within the first opening, forming a first trench in the inter-device region; and thereafter performing a third etching process to remove the material layer in the second opening.
摘要:
The present disclosure provides a semiconductor device with a strained SiGe channel and a method for fabricating such a device. In an embodiment, a semiconductor device includes a substrate including at least two isolation features, a fin substrate disposed between and above the at least two isolation features, and an epitaxial layer disposed over exposed portions of the fin substrate. According to one aspect, the epitaxial layer may be disposed over a top surface and sidewalls of the fin substrate. According to another aspect, the fin substrate may be disposed substantially completely above the at least two isolation features.
摘要:
A method of fabricating a semiconductor device is provided which includes providing a substrate. A material layer is formed over the substrate. A polymer layer is formed over the material layer. A nano-sized feature is self-assembled using a portion of the polymer layer. The substrate is patterned using the nano-sized feature.
摘要:
A semiconductor device includes a semiconductor substrate; a gate stack overlying the substrate, a spacer formed on sidewalls of the gate stack, and a protection layer overlying the gate stack for filling at least a portion of a space surrounded by the spacer and the top surface of the gate stack. A top surface of the spacer is higher than a top surface of the gate stack.