Abstract:
In one embodiment a system to detect multi-domain regions in the soft under layer of a perpendicular magnetic media comprises a radiation targeting assembly to target a polarized radiation beam onto a surface of a substrate covered by the soft under layer of a perpendicular magnetic media, a radiation collecting assembly that collects radiation reflected from the surface, a processor coupled to the first radiation collecting assembly, and a memory module coupled to the processor. The memory module comprises logic instructions which, when executed by the processor, configure the processor to record signal values from radiation reflected by the radiation beam at different positions on the surface and analyze the signal values to detect a region of multiple magnetic domains in the soft under layer of a perpendicular magnetic media.
Abstract:
Automated comparison of tool recipes is described. A target recipe is digitally translated from a tool language to a standard language format to produce a translated recipe. The translated recipe is digitally compared to a source recipe that is also in the standard language format.
Abstract:
One embodiment disclosed relates to an apparatus for detecting defects in substrates. An irradiation source is configured to generate an incident beam, and a lens system configured to focus the incident beam onto a target substrate so as to cause emission of electrons. A multiple-bin detector is configured to detect the emitted electrons, and each bin of the detector detects the emitted electrons within a range of energies. A processing system configured to process signals from the multiple-bin detector. Other embodiments are also disclosed.
Abstract:
A problem in the inspection of transparent wafers and disks is the detection of top surface particles. More precisely, it is being able to assign a scattering site as being due to a particle at the top or bottom surface of a transparent wafer. A method of the present invention is to use an elliptical mirror, with a pinhole at its top focus, together with a focused beam. The focused beam will diverge as it passes through the transparent wafer and as a result any particle on the bottom surface will see a lower optical intensity and will appear weaker than a top surface particle. The suppression of scattered light from the bottom surface occurs because the source of the scattered light (the bottom surface) is far from the bottom foci of the elliptical mirror. This means that the light from the bottom surface, which arrives inside the ellipsoid, will be out of focus at the top foci of the ellipsoid and as a result very little light from the bottom surface will pass through the pinhole at the top foci of the elliptical mirror. This reduction of light from the bottom surface can be further improved by making the pinhole diameter to be substantially less than the thickness of the transparent wafer.
Abstract:
One embodiment described relates to a method of electron beam imaging of a target area of a substrate. An electron beam column is configured for charge-control pre-scanning using a primary electron beam. A pre-scan is performed over the target area. The electron beam column is re-configured for imaging using the primary electron beam. An imaging scan is then performed over the target area. Other embodiments are also described.
Abstract:
A high performance objective having very small central obscuration, an external pupil for apertureing and Fourier filtering, loose manufacturing tolerances, large numerical aperture, long working distance, and a large field of view is presented. The objective is preferably telecentric. The design is ideally suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths in the UV to VUV spectral range.
Abstract:
Structural modification using electron beam activated chemical etch (EBACE) is disclosed. A target or portion thereof may be exposed to a gas composition of a type that etches the target when the gas composition and/or target are exposed to an electron beam. By directing an electron beam toward the target in the vicinity of the gas composition, an interaction between the electron beam and the gas composition etches a portion of the target exposed to both the gas composition and the electron beam. Structural modifications of the target may be conducted by means of etching due to interaction between the electron beam and gas composition.
Abstract:
A system and method for inspecting a specimen, such as a semiconductor wafer, including illuminating at least a portion of the specimen using an excimer source using at least one relatively intense wavelength from the source, detecting radiation received from the illuminated portion of the specimen, analyzing the detected radiation for potential defects present in the specimen portion.
Abstract:
One embodiment relates to an apparatus for generating a dual-energy electron beam. A first electron beam source is configured to generate a lower-energy electron beam, and a second electron beam source is configured to generate a higher-energy electron beam. A holey mirror is biased to reflect the lower-energy electron beam. The holey mirror also includes an opening therein through which passes the higher-energy electron beam, thereby forming the dual-energy electron beam. A prism array combiner introduces a first dispersion between the lower-energy electron beam and the higher-energy electron beam within the dual-energy electron beam. A prism array separator is configured to separate the dual-energy electron beam traveling to a substrate from a scattered electron beam traveling away from the substrate. The prism array separator introduces a second dispersion which compensates for the dispersion of the prism array combiner. Other embodiments are also disclosed.
Abstract:
A process which addresses the problem of transient defects comprises first processing one or more test chips on a substrate to reveal one or more potential transient defects during subsequent processing of all of the chips on the substrate; identifying the exact locations of such potential transient defects on one or more chips of a silicon substrate; forming a file containing the coordinates of each potential transient defect on the chip; converting the file into a CAD image layer capable of displaying such potential transient defects; and displaying such potential transient defects superimposed over a CAD image of the actual circuit to permit visual inspection of the compound CAD image and to permit optional action to be taken in view of such potential transient defects. In another embodiment of the invention, the file containing the locations of the potential transient defects is transmitted to a metrology apparatus such as a critical dimension (CD) scanning electron microscope (SEM) which monitors the potential transient defect addresses during processing of the chip. The two embodiments of the invention may be practiced in the alternative or in combination with one another.