Abstract:
Disclosed are several embodiments of a battery-less piezo-electric defibrillation system (2) comprising external piezo-electric defibrillator (4) and at least one electrode (5) connected thereto. The system includes a piezo-electric generator (6) connected to direct cardiac access-(5), or indirect subcutaneous electrode assemblies (30). The piezo-electric generator (6) is energized by a spring-driven striker element (8) and produces electrical pulse for defibrillation. The direct cardiac access electrodes (5) engage the heart muscle directly via the intercostal space. Alternatively, indirect subcutaneous electrodes (34a) are positioned under patient's skin.
Abstract:
Several embodiments of a battlefield defibrillation system (2) comprising external defibrillator (6) and at least one electrode (8) connected thereto are described. The system includes direct cardiac access-(8), or indirect subcutaneous electrodes (30). The direct cardiac access electrodes (26) engage the heart muscle directly via the intercostal space. Indirect subcutaneous electrodes are positioned under patient's skin. Several design features are implemented to aid precise electrode positioning and facilitate system operation by an untrained personnel.
Abstract:
A device according to some embodiments may include an implantable flexible carrier and a pair of electrodes located on the carrier. The electrodes may be spaced from each other by a distance greater than 3 mm, and may be configured to cause, when supplied with an electrical signal, a unidirectional electric field sufficient to modulate at least one nerve.
Abstract:
A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-tachycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-tachycardia pacing energy to the capacitor subsystem.
Abstract:
The present disclosure relates to methods, devices, and systems used for the treatment of and/or promoting recovery from various neurological disorders and conditions, including epilepsy and other seizure disorders and movement and other related disorders; for promoting recovery from acute or chronic brain injury (e.g. stroke, hypoxia/ischemia, head trauma, subarachnoid hemorrhage, and other forms of brain injury, for awakening and/or promoting the recovery of patients in various levels of coma, altered mental status or vegetative state); or for promoting recovery from chronic daily headache and migraine and related disorders via external (cutaneous) stimulation of the sensory branches of the trigeminal nerve in the face and forehead. More specifically, devices and electrode assemblies configured for stimulation of the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, nasal and infratrochlear nerves are disclosed.
Abstract:
A biosensor is proposed for insertion into the subcutaneous tissue of a user wherein the biosensor includes at least one flexible substrate (2) and at least one electrode (5) on at least one surface (9) of the substrate and at least one contacting element (3). The contacting element is connected to the electrode. The substrate has at least one kink (4), at which the substrate is at least partly kinked such that the surface is subdivided into at least two interconnected outer surfaces (9a, 9b, 9c).
Abstract:
An implantable medical lead includes (i) a proximal end portion including a contact and having a proximal end; and (ii) a distal end portion including an electrode and having a distal end. The electrode is electrically coupled to the contact. The distal end portion is generally flat and sufficiently stiff to be pushed through subcutaneous tissue.
Abstract:
Systems and methods according to the present invention relate to a substantially extracorporeal pulse generator system for electrical stimulation of one or more target nerve or their branches using one or more preferably percutaneous leads each having one or more electrodes implanted in, on, around, or near the target nerve. Improved systems include a patch assembly configured to be adhesively mounted to a patient's skin and an electrical stimulation assembly configured to be mechanically mounted to the patch assembly. A preferred patch assembly, in addition to provide mechanical mounting of the stimulation assembly, provides a power source for the stimulation assembly, and may further serve as a return electrode. Associated system components and methods of use are also provided.
Abstract:
Methods of cardiac rhythm analysis in an implantable cardiac stimulus device, and devices configured for such methods. In an illustrative embodiment, certain data relating to cardiac event rate or amplitude is modified following delivery of a cardiac stimulus. In another embodiment, cardiac rhythm analysis is performed using one of plural states, with the plural states using different criteria, such as a detection threshold, to detect cardiac events in a sensed signal. Following delivery of a cardiac stimulus, data is manipulated to force the analysis into one of the states, where stimulus is delivered, in the illustrative embodiment, only after a different state is invoked. Implantable devices incorporating operational circuitry for performing such methods are also included in other illustrative embodiments.
Abstract:
A device is disclosed that includes an external unit configured to communicate with an implant unit beneath the skin of a subject and an indicator associated with the external unit. The indicator is configured to produce an indicator signal when the external unit is within a predetermined range of the implant unit. In addition, the indicator may be configured to vary the indicator signal according to a distance between the external unit and the implant unit. Furthermore, a method of locating an external unit with respect to an implant unit is disclosed that includes detecting a distance between the external unit and the implanted unit located beneath the skin of a subject, producing an indicator signal when the external unit is within a predetermined range of the implant unit, and varying the indicator signal as a function of a distance between the external unit and the implant unit.