Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
The invention provides a composition comprising an ethylene/α-olefin/non-conjugated diene interpolymer, which has the following properties: an Mz(abs)/Mz(Conv) value greater than 1.35; an Mz(BB)/Mw(abs) value greater than 1.6; and a non-conjugated diene content less than 10 weight percent, based on the total weight of the interpolymer. The invention also provides a process for forming a crosslinked composition, said process comprising: (a) forming a polymeric admixture comprising at least the following: (A) an ethylene/α-olefin/non-conjugated diene copolymer rubber (B) which has the following properties: an Mz(abs)/Mz(Conv) value less than 1.3; an Mz(BB)/Mw(abs) value greater than 1.6, but less than 2.5; and an Mw(abs) value less than 350,000 g/mole; and (B) a coupling amount of (i) at least one poly(sulfonyl azide) or (ii) at least one peroxide; and (b) heating the resulting admixture to a temperature at least the decomposition temperature of the crosslinking agent. The invention also provides a process for forming a shaped article, said process comprising: (a) forming a polymeric admixture comprise of at least one ethylene/α-olefin/non-conjugated diene interpolymer, at least one sulfur-based curative or organic peroxide-based crosslinking agent, and, optionally, a process oil, carbon blacks, additional inorganic fillers, organic fillers, cure accelerators, and/or foaming agents; (b) shaping the resulting admixture; (c) heating the resulting admixture to a temperature at least the decomposition temperature of the sulfur-based cure agent or the peroxide crosslinking agent.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
A hydrous water absorbent polymer-dispersed ultraviolet curable resin composition includes a hydrous water absorbent polymer preliminarily hydrated, swollen and dispersed in the resin composition, and a hydrophilic monomer. The hydrophilic monomer is added not less than 10 mass % to the resin composition.
Abstract:
There is provided a resin composition made of a mixture of a crosslinked polyethylene and a non-crosslinked polyethylene, and having a density of 0.960 g/cm3 or more and a melt fracture tension within a range from 20 to 100 mN. Furthermore, there is provided a high-frequency co-axial cable comprising sequentially: an internal conductor; an internal solid layer; a foamed insulation layer; an external solid layer; an external conductor; and an outer coat, the foamed insulation layer being composed of a foam body of the above resin composition.
Abstract:
Biodegradable aliphatic polyester-based resin foamed particles that are excellent in environmental suitability and are produced using a source material derived from a plant, and a molded product of the same are provided. Thus, biodegradable aliphatic polyester-based resin foamed particles retaining high rigidity even when foamed at a high degree and having heat resistance, and a molded product are provided. Biodegradable aliphatic polyester-based resin foamed particles produced by foaming a resin composition obtained by melting and kneading a base resin constituted with a polymer (poly(3-hydroxyalkanoate)) having one or more recurring unit represented by the formula: [—O—CHR—CH2—CO—] (wherein, R is an alkyl group represented by CnH2n+1; and n is an integer of 1 to 15) and a polylactic acid-based resin, and an isocyanate compound. A molded product is produced by filling the resin foamed particles into a die, followed by heating and molding.
Abstract translation:提供环境适应性优异且使用源自植物的源材料制造的生物降解性脂肪族聚酯类树脂发泡粒子及其成型品。 因此,即使在高度发泡并具有耐热性的情况下也能够提供保持高刚性的生物降解性的脂肪族聚酯类树脂发泡体和成型体。 通过使具有一个或多个由下式表示的重复单元的聚合物(聚(3-羟基链烷酸酯))构成的基础树脂熔融和捏合而获得的树脂组合物发泡制备的可生物降解的脂肪族聚酯类树脂发泡颗粒:[-O-CHR -CH 2 -CO-](其中,R为由C n H 2n + 1表示的烷基,n为1〜15的整数),聚乳酸系树脂和异氰酸酯化合物。 通过将树脂发泡颗粒填充到模具中,然后进行加热和模塑来制造模制产品。
Abstract:
A gas exchange membrane is for use in an artificial lung. The membrane consists of a foamed, closed-cell material, in particular of silicone rubber. The membrane is produced by extruding a basic material which contains a foaming agent. The extrudate is then foamed. The result is a gas exchange membrane which has an increased gas exchange performance compared to known material due to the high permeability of the surface.
Abstract:
Reinforced, laminated, impregnated, and materials with composite properties as cross linked polyvinyl alcohol hydrogel structures in bulk or cellular matrix forms that can take essentially any physical shape, or can have essentially any size, degree of porosity and surface texture. They have a wide range of physical properties, unusual and unique combinations of physical properties and unique responses to stress fields, which allows for their use in many end use applications.
Abstract:
An object of the present invention is to provide a novel ethylene-α-olefin copolymer excellent in crosslinking properties; a foamed molded article having a low specific gravity and a low compression set (CS) and a composition capable of producing the foamed molded article, footwear parts composed of a foamed molded article; an ethylenic copolymer composition excellent in balance between weather resistance and mechanical strength, and an electric wire coating material and an electric wire sheath using the ethylenic copolymer composition; and a thermoplastic elastomer capable of producing a molded article excellent in balance between mechanical strength and toughness. The ethylenic copolymer (A) of the present invention is a copolymer composed of only ethylene and an α-olefin having 3 to 20 carbon atoms, and is characterized in that vinyl-group content (a) per 1000 carbon atoms as measured by infrared absorption spectroscopy, MFR10/MFR2.16 (b), and the specific gravity (c) are within a specific range.
Abstract:
The present inventions in various aspects provide elastic polymers compositions for encapsulation of cells. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked in the presence of glycerol and a population of cells to form elastic porous polymer scaffolds suitable for cell encapsulation and/or proliferation.