Abstract:
A charged-particle beam system capable of reliably detecting defects in an interconnect pattern, which is formed, for example, on a semiconductor device. The system uses an electron source for producing an electron beam. A specimen on which the interconnect pattern is formed is scanned with the electron beam in two dimensions. An image of the specimen is created based on a signal obtained from the specimen in response to the scanning, and the image is displayed on a display portion. Two probes are brought into contact with arbitrary locations on the interconnect pattern. Absorption currents obtained via the probes are applied to a differential current-voltage converter. Thus, the difference between the absorption currents is converted into a voltage signal. An absorption current image is created based on the voltage signal and displayed on the display portion.
Abstract:
An aberration-correcting microscopy instrument is provided. The instrument has a first magnetic deflector disposed for reception of a first non-dispersed electron diffraction pattern. The first magnetic deflector is also configured for projection of a first energy dispersed electron diffraction pattern in an exit plane of the first magnetic deflector. The instrument also has an electrostatic lens disposed in the exit plane of a first magnetic deflector, as well as a second magnetic deflector substantially identical to the first magnetic deflector. The second magnetic deflector is disposed for reception of the first energy dispersed electron diffraction pattern from the electrostatic lens. The second magnetic deflector is also configured for projection of a second non-dispersed electron diffraction pattern in a first exit plane of the second magnetic deflector. The instrument also has an electron mirror configured for correction of one or more aberrations in the second non-dispersed electron diffraction pattern. The electron mirror is disposed for reflection of the second non-dispersed electron diffraction pattern to the second magnetic deflector for projection of a second energy dispersed electron diffraction pattern in a second exit plane of the second magnetic deflector.
Abstract:
An electron-beam size measuring apparatus includes: electron beam irradiating means that irradiates an electron beam on a surface of a sample; detection means that detects electrons emitted from the sample; distance measurement means that measures the distance between the sample and a secondary electron control electrode of the detection means; a stage on which the sample is mounted; and control means which adjusts the height of the stage so that the distance measured by the distance measurement means would be equal to a predetermined fixed distance, which applies a control voltage to the secondary electron control electrode of the detection means, the control voltage predetermined so as to allow the sample surface potential to become constant with the sample positioned at the fixed distance, and which causes the electron beam to be irradiated by applying a predetermined accelerating voltage. The stage may include holding means that does not electrically connect the sample thereto, and moving means that moves the sample up and down.
Abstract:
An energy filtering microscopy instrument is provided. An objective lens is disposed for reception of electrons in order to form an electron diffraction pattern in a backfocal plane of the objective lens. An entrance aperture disposed in the backfocal plane of the objective lens for filtering a slice of the electron diffraction pattern. A magnetic deflector has an entrance plane and an exit plane. The entrance aperture is disposed in the entrance plane. The magnetic deflector is disposed to receive the slice of the electron diffraction pattern and project an energy dispersed electron diffraction pattern to the exit plane. An exit aperture is disposed in the exit plane of the magnetic deflector for selection of desired electron energy of the energy dispersed electron diffraction pattern.
Abstract:
A method of measuring properties of a sample using an electron beam. Coordinates of a measurement site on the sample, and a diameter of the electron beam are defined. Multiple measurement locations are determined within the measurement site, using the coordinates of the measurement site and the diameter of the electron beam. The measurement locations are selected such that the electron beam when directed at the multiple measurement locations (either through beam deflection or sample movement) substantially covers the measurement site. The electron beam is directed to the measurement locations and properties of the sample are measured at each of the measurement locations.
Abstract:
An electron beam detector detects a peak of a spectrum, and when a peak position is deviated from a reference position on the electron beam detector, a controller for controlling an electron beam position on the electron beam detector is used to correct a deviation. An electron energy loss spectrum is measured while controlling correction a deviation between an electron beam position on a specimen, and a peak position of the spectrum, and a spectrum measuring with the electron beam detector.
Abstract:
In order to provide an analysis electron microscope which is capable of effectively performing elementary analysis of plural analysis points of a sample, an electron beam 2 discharged from an electronic source 1 irradiates the sample through a condenser lens aperture 3. The electron beam 2 transmitted through the sample 12 is magnified by an objective lens and a plural focussing lens 18 and forms an electron microscope image of the sample 12 on a fluorescent plate 13. A characteristic X-ray emitted from the sample 12 is detected by the elementary analysis device having the elementary analysis detecting element 16 and an elementary analysis control equipment 17 and is analyzed. The position of the analysis points 1 and 2 of the sample and the spot size of the irradiation electron beam is stored in an electron microscope control equipment 14 beforehand, and when the analysis starts, the stored position and size information begin to be read, the analysis points 1 and 2 and the electron beam size are set automatically based on the information, and the elementary analysis of the analysis points 1 and 2 is thereby performed automatically.
Abstract:
An apparatus and a method for sample current spectroscopy surface measurement to inspect crystailnity of a sample surface. An electron beam is irradiated onto a surface of a sample by an electron gun. A variable voltage source supplies an acceleration voltage which is variable to change an acceleration energy of the electron beam irradiated from the electron gun onto the sample surface. A sample current measurement means measures a sample current which flows into a sample when the electron beam is irradiated from the electron gun onto the sample surface. Variation of the sample current is detected by measuring the sample current by the sample current measurement means when the acceleration energy of the electron beam irradiated by the electron gun onto the sample surface is changed by the variable voltage source, thereby crystallinity of the sample surface is inspected.
Abstract:
An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.