Abstract:
In a metal film production apparatus, a copper plate member is etched with a Cl2 gas plasma within a chamber to form a precursor comprising a Cu component and a Cl2 gas; and the temperatures of the copper plate member and a substrate and a difference between their temperatures are controlled as predetermined, to deposit the Cu component of the precursor on the substrate, thereby forming a film of Cu. In this apparatus, Cl* is formed in an excitation chamber of a passage communicating with the interior of the chamber to flow a Cl2 gas, and the Cl* is supplied into the chamber to withdraw a Cl2 gas from the precursor adsorbed onto the substrate, thereby promoting a Cu film formation reaction. The apparatus has a high film formation speed, can use an inexpensive starting material, and can minimize impurities remaining in the film.
Abstract:
A source gas is supplied into a chamber through a nozzle, and electromagnetic waves are thrown from a plasma antenna into the chamber. The resulting Cl2 gas plasma causes an etching reaction to a plurality of copper protrusions, which are arranged between a substrate and a ceiling member in a discontinuous state relative to the flowing direction of electricity in the plasma antenna, to form a precursor (CuxCly). The precursor (CuxCly) transported toward the substrate controlled to a lower temperature than the temperature of an etched member is converted into only Cu ions by a reduction reaction, and directed at the substrate to form a thin Cu film on the surface of the substrate. The speed of film formation is fast, the cost is markedly decreased, and the resulting thin Cu film is of high quality.
Abstract:
A source gas is supplied into a chamber through a nozzle, and electromagnetic waves are thrown from a plasma antenna into the chamber. The resulting Cl2 gas plasma causes an etching reaction to a plurality of copper protrusions, which are arranged between a substrate and a ceiling member in a discontinuous state relative to the flowing direction of electricity in the plasma antenna, to form a precursor (CuxCly). The precursor (CuxCly) transported toward the substrate controlled to a lower temperature than the temperature of an etched member is converted into only Cu ions by a reduction reaction, and directed at the substrate to form a thin Cu film on the surface of the substrate. The speed of film formation is fast, the cost is markedly decreased, and the resulting thin Cu film is of high quality.
Abstract:
An apparatus for forming a metal film, including a reaction vessel for housing a substrate, a precursor feeding device for bubbling a carrier gas through a liquid organometallic complex, vaporizing the organometallic complex, producing a precursor from the vaporized organometallic complex, and feeding the precursor into the reaction vessel, a rotating magnetic field generator for creating a rotating magnetic field in a space above the substrate, and a second plasma generator for generating a plasma from a reducing gas fed into the reaction vessel.
Abstract:
To provide a plural openings control type idle air control device with a low cost by adding a few parts for controlling plural bypass air passages to a single openings control type idle air control device for opening and closing a single bypass air passage, a valve body 3 is formed at a lower end part of a valve body driving mechanism 1 along the operating direction X-X of the valve body driving mechanism 1, a cylindrical plunger 5 is mounted on an outer periphery of the valve body 3, plural bypass air passages 16a, 16b connected with plural intake passages are provided to be opened on a side wall of a valve body storage chamber 13, and plural openings of the bypass air passages are controlled so as to be opened and closed by the plunger 5 slidably provided in the valve body storage chamber 13.
Abstract:
An electrode pattern of an electrostatic chuck includes linear portions in a radial direction and a plurality of concentric C-shaped portions branching out from the linear portions. The linear portions are disposed opposite to each other in a diametrical direction and are such that they lie on a line that is almost straight. The C-shaped portions are engaged alternately like teeth of a comb.
Abstract:
A Cl2 gas plasma is generated at a site within a chamber between a substrate and a metal member. The metal member is etched with the Cl2 gas plasma to form a precursor. A nitrogen gas is excited in a manner isolated from the chamber accommodating the substrate. A metal nitride is formed upon reaction between excited nitrogen and the precursor, and formed as a film on the substrate. After film formation of the metal nitride, a metal component of the precursor is formed as a film on the metal nitride on the substrate. In this manner, a barrier metal film with excellent burial properties and a very small thickness is produced at a high speed, with diffusion of metal being suppressed and adhesion to the metal being improved.
Abstract:
In a metal film production apparatus, a copper plate member is etched with a Cl2 gas plasma within a chamber to form a precursor comprising a Cu component and a Cl2 gas; and the temperatures of the copper plate member and a substrate and a difference between their temperatures are controlled as predetermined, to deposit the Cu component of the precursor on the substrate, thereby forming a film of Cu. In this apparatus, Cl* is formed in an excitation chamber of a passage communicating with the interior of the chamber to flow a Cl2 gas, and the Cl* is supplied into the chamber to withdraw a Cl2 gas from the precursor adsorbed onto the substrate, thereby promoting a Cu film formation reaction. The apparatus has a high film formation speed, can use an inexpensive starting material, and can minimize impurities remaining in the film.
Abstract:
A copper film vapor phase deposition method includes the steps of exposing high-purity copper to a plasma of a gas containing chlorine gas to etch the high-purity copper, thereby generating active CuxCly, wherein x is 1 to 3, y is 1 to 3, gas, and forming a copper film by transporting the CuxCly gas onto the surface of a substrate to be processed. By using inexpensive high-purity copper and inexpensive chlorine, hydrogen chloride, or chlorine and hydrogen as source gases, a copper film containing no residual impurity such as carbon and having high film quality can be formed with high reproducibility.
Abstract:
A carbonaceous material for use as an anode material in secondary batteries using non-aqueous solvent comprises a material obtained by calcining a solid, the solid, in turn, being obtained by heating tar and/or pitch with furfural in the presence of an acid catalyst, the use of the resulting anode material imparting to the battery a relatively large capacity while having only a small irreversible capacity loss in the first cycle.