标题翻译:SMICONDUCTOR DEVICE,METHOD FOR FABRICATING THEREOF METHOD AND METHOD FOR FABRICATING THEWORKING METHOD AND METHOD FOR FABRICATING ANDERIFY AND METHOD FOR INCREASING FILM STRESS
摘要:
A method for forming a semiconductor device is provided. The method comprises steps of providing a substrate having a first-conductive-type transistor and a second-conductive-type transistor formed thereon and then forming a stress layer over the substrate to conformally cover the first-conductive-type transistor and the second-conductive-type transistor. A cap layer is formed on the stress layer over the first-conductive-type transistor. A modification process is performed. The cap layer is removed.
摘要:
A method for forming a high stress layer is provided. According to the method, a substrate is put into a reactor of a PECVD machine and a reaction gas is added into the reactor. Then, an assistant reaction gas which has the molecular weight greater than or equal to the molecular weight of nitrogen gas is added into the reactor. Next, a carrier gas which has the molecular weight smaller than the molecular weight of nitrogen gas is added into the reactor to increase the bombarding efficiency in film deposition. Thereby, the high stress layer is formed on the substrate.
摘要:
A method of forming a semiconductor device. The method comprises steps of providing a substrate having a first transistor, a second transistor and non-salicide device formed thereon and the conductive type of the first transistor is different from that of the second transistor. A buffer layer is formed over the substrate and a tensile material layer is formed over the buffer layer. A portion of the tensile material layer over the second transistor is thinned and a spike annealing process is performed. The tensile material layer is removed to expose the buffer layer over the substrate and a patterned salicide blocking layer is formed over the non-salicide device. A salicide process is performed for forming a salicide layer on a portion of the first transistor and the second transistor.
摘要:
A method of forming compressive nitride film is provided. The method includes performing a chemical vapor deposition (CVD) process to form a nitride film on a substrate, and the method is characterized by adding a certain gas, selected from among Ar, N2, Kr, Xe, and mixtures thereof. Due to the addition of the foregoing certain gas, it can reduce the compressive stress, thereby increasing PMOS drive current gain.
摘要:
A method of fabricating a silicon nitride layer is described. First, a substrate is provided. Then, a silicon nitride layer is formed on the substrate. The silicon nitride layer is UV-cured in an atmosphere lower than the standard atmospheric pressure. Through the UV curing treatment, the tensile stress of the silicon nitride layer is increased.
摘要:
A method for fabricating an ultra-high tensile-stressed nitride film is disclosed. A PECVD process is first performed to deposit a transitional silicon nitride film over a substrate. The transitional silicon nitride film has a first concentration of hydrogen atoms. The transitional silicon nitride film is subjected to UV curing process for reducing the first concentration of hydrogen atoms to a second concentration of hydrogen atoms.
摘要:
A silicon oxide gap-filling process is described, wherein a CVD process having an etching effect is performed to fill up a trench with silicon oxide. The reaction gases used in the CVD process include deposition gases and He/H2 mixed gas as a sputtering-etching gas, wherein the percentage of the He/H2 mixed gas in the total reaction gases is raised with the increase of the aspect ratio of the trench.
摘要翻译:描述了氧化硅间隙填充工艺,其中执行具有蚀刻效果的CVD工艺以用氧化硅填充沟槽。 在CVD工艺中使用的反应气体包括作为溅射蚀刻气体的沉积气体和He / H 2 H 2混合气体,其中He / H 2 H 2混合气体的百分比 在总反应中随着沟槽纵横比的增加气体的升高。
摘要:
A method of fabricating a shallow trench isolation structure is disclosed. On a substrate, a pad oxide layer and a mask layer are successively formed. The pad oxide layer, the mask layer and a portion of the substrate are patterned to form a trench. After performing a rapid wet thermal process, a liner layer is formed on the exposed surface of the substrate, including the exposed silicon surface of the substrate in the trench and sidewalls and the surface of the mask layer. An oxide layer is deposited over the trench and the substrate and fills the trench. A planarization process is performed until the mask layer is exposed. The mask layer and the pad oxide layer are removed to complete the shallow trench isolation structure.
摘要:
Methods of fabricating interconnect structures in a semiconductor integrated circuit (IC) are presented. A preferred embodiment comprises forming interconnect lines and vias through a dual-damascenes process. It includes forming a via dielectric layer, an etch stop layer directly over the via dielectric layer, and a trench dielectric layer over the etch stop layer. The etch stop layer is patterned through a first photolithography and etch process to form openings in the etch stop layer, prior to the formation of the trench dielectric layer. A second photolithography and etch process is performed after formation of the trench dielectric layer to create trench openings in the trench dielectric layer and via openings in the via dielectric layer, where the patterned etch stop layer acts as a hard-mask in forming vias in the via dielectric layer.
摘要:
A method for fabricating a semiconductor device is disclosed. An exemplary method includes a providing substrate. A dielectric layer is formed over the semiconductor substrate and a stop layer is formed over the dielectric layer. The stop layer and the dielectric layer comprise a different material. The method further includes forming a patterned hard mask layer over the stop layer and etching the semiconductor substrate through the patterned hard mask layer to form a plurality of trenches. The method also includes depositing an isolation material on the semiconductor substrate and substantially filling the plurality of trenches. Thereafter, performing a CMP process on the semiconductor substrate, wherein the CMP process stops on the stop layer.