Abstract:
A medical device utilizing temperature sensing to identify or assess anatomical bodies or structures includes an elongate tubular member, at least one electrode, a thermal sensor, and a temperature response assessment system or component. The at least one electrode may be connected to the distal portion of the elongate tubular member, and the one or more electrode can be configured to provide energy or heat to a portion of an anatomical body or structure. The thermal sensor may be configured to measure the thermal response of the portion of an anatomical body or structure, e.g., tissue or blood pools. The temperature response assessment system or component can be coupled to the thermal sensor. In embodiments, the device may include a lumen and port opening, which may accommodate a tool, such as a needle. Methods for using temperature sensing to identify an anatomical body or structure are also disclosed.
Abstract:
An efficient system for diagnosing arrhythmias and directing catheter therapies may allow for measuring, classifying, analyzing, and mapping spatial electrophysiological (EP) patterns within a body. The efficient system may further guide arrhythmia therapy and update maps as treatment is delivered. The efficient system may use a medical device having a high density of sensors with a known spatial configuration for collecting EP data and positioning data. Further, the efficient system may also use an electronic control system (ECU) for computing and providing the user with a variety of metrics, derivative metrics, high definition (HD) maps, HD composite maps, and general visual aids for association with a geometrical anatomical model shown on a display device.
Abstract:
Embodiments of the present invention provide an irrigated catheter having irrigation fluid directed at target areas where coagulation is more likely to occur so as to minimize blood coagulation and the associated problems. In one embodiment, an irrigated ablation electrode assembly for use with an irrigated catheter device comprises a proximal member having at least one passageway for a fluid with an outlet disposed at an external surface of the proximal member; and a distal member connected with the proximal member and having an external surface. The distal member includes an electrode. The external surface of the proximal member and the external surface of the distal member meet at an intersection. The at least one passageway of the proximal member is configured to direct a fluid flow through the outlet toward a region adjacent the intersection.
Abstract:
A method of calibrating a robotic device, such as a cardiac catheter, includes oscillating the device on an actuation axis by applying an oscillation vector at an oscillation frequency. While oscillating, a location of the device is periodically measured to generate a plurality of location data points, which may express the location of the device relative to a plurality of measurement axes. The location data points are then processed using a signal processing algorithm, such as a Fourier transform algorithm, to derive a transfer function relating a position of the device to a movement vector for the actuation axis. The transfer function may be resolved into and expressed as a calibration vector for the actuation axis, which may include one or more components, including zero components, directed along each of the measurement axes. The process may be repeated for any actuation axes on which calibration is desired.
Abstract:
A system and method for assessing effective delivery of ablation therapy to a tissue in a body is provided. A three-dimensional anatomical map of the tissue is generated and displayed with the map defining a corresponding volume. An index is generated corresponding to a location within the volume with the index indicative of a state of ablation therapy at the location. The index may be derived from one or more factors such as the duration an ablation electrode is present at the location, the amount of energy provided, the degree of electrical coupling between an ablation electrode and the tissue at the location and temperature. A visual characteristic (e.g., color intensity) of a portion of the anatomical map corresponding to the location is then altered responsive to the index.
Abstract:
A handle assembly is provided for use in navigating a deformable shaft within a body. The assembly includes a first guide member defining first and second linear channels and a second guide member configured for rotation relative to the first guide member. First and second connectors are disposed within, and movable within, the first and second linear channels along first and second parallel axes, respectively, and are configured for coupling to first and second steering wires, respectively. The assembly includes means, such as a flexible coupling connected to the second guide member and the connectors, for translating rotation of the second guide member into linear movement of the first connector in a first axial direction and linear movement of the second connector in a second axial direction, opposite the first axial direction such that the first and second steering wires move in opposite directions.
Abstract:
A photodynamic mapping device includes a shaft with a proximal end and a distal end, at least one optical electrode at the distal end of the shaft, and at least one optical fiber positioned inside the shaft. In embodiments, the at least one optical fiber extends from the distal end of the shaft and is coupled to the at least one optical electrode provided at or about an outer surface of the device. In an embodiment, at least one optical fiber is coupled, at or about the proximal end of the shaft, to a light source coupled and an optical sensor. An analyzer can be coupled to the optical sensor. Embodiments of such devices can be configured to deliver substances, such as photodynamic therapeutic substances.
Abstract:
A method of constructing an EP map is provided. The method comprises obtaining a first surface model of an anatomic structure, the first model comprising an alpha shell of a cloud of location data points. The method further comprises obtaining a second surface model of the structure, the second surface model comprising an alpha shell of a cloud of measurement points. The method further comprises processing the first and second models to identify, for at least one of the location data points, a point on the second surface model that is closest in distance to the location data point, wherein said identified point has a value of said EP parameter associated therewith. The method still further comprises assigning a visual indicator to the location data point based on the EP parameter value associated with the identified point and in accordance with a visualization scheme corresponding to the EP parameter.
Abstract:
The invention relates to electrodes used in ablation catheter devices, where the electrodes contain two or more thermal sensors at different positions within the electrode that are capable of detecting temperature differences along the external surface of the electrode. In preferred embodiments, the thermal sensors are separated by one or more thermal insulating members and the thermal sensors are positioned near the external surface of the electrode at about the same distance from the end of the electrode, so that temperature measurements can indicate the position of the electrode with respect to the tissue desired to be ablated.
Abstract:
A diagnostic device and method for assessing lesion formation by measuring temperature changes during endocardial ablation. Intracardiac echo catheter data is accurately mapped into a model maintained by a visualization, navigation, or mapping system using the position and orientation of the intracardiac echo catheter transducer within the model. For each point in the model, either a frequency shift or echo time shift is calculated from the intracardiac echo data to determine local temperature changes, and the local temperature changes are displayed within a rendering of the model for the user.