Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
Abstract:
The present invention relates to a light emitting diode including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the first conductive type semiconductor layer, and an insulation layer disposed between the first conductive type semiconductor layer and the second electrode pad, the insulation layer insulating the second electrode pad from the first conductive type semiconductor layer. At least one upper extension may be electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
Abstract:
A novel methylcyclohexane derivative, and a pharmaceutical composition including the same that is effective for the prevention or treatment of pain.
Abstract:
The present invention provides a method of fabricating a light emitting diode chip having an active layer between an N type semiconductor layer and a P type semiconductor layer. The method comprises the steps of preparing a substrate; laminating the semiconductor layers on the substrate, the semiconductor layers having the active layer between the N type semiconductor layer and the P type semiconductor layer; and forming grooves on the semiconductor layers laminated on the substrate until the substrate is exposed, whereby inclined sidewalls are formed by the grooves in the semiconductor layers divided into a plurality of chips. According to embodiments of the present invention, a sidewall of a semiconductor layer formed on a substrate of a light emitting diode chip is inclined with respect to the substrate, whereby its directional angle is widened as compared with a light emitting diode chip without such inclination. As the directional angle of the light emitting diode chip is wider, when a white light emitting device is fabricated using the light emitting diode chip and a phosphor, light uniformity can be adjusted even though the phosphor is not concentrated at the center of the device. Thus, the overall light emitting efficiency can be enhanced by reducing a light blocking phenomenon caused by the increased amount of the phosphor distributed at the center portion.
Abstract:
Exemplary embodiments of the present invention relate to a including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
Abstract:
Disclosed herein is a light emitting diode. The light emitting diode includes a support substrate, semiconductor layers formed on the support substrate, and a metal pattern located between the support substrate and the lower semiconductor layer. The semiconductor layers include an upper semiconductor layer of a first conductive type, an active layer, and a lower semiconductor layer of a second conductive type. The semiconductor layers are grown on a sacrificial substrate and the support substrate is homogeneous with the sacrificial substrate.
Abstract:
There is provided a light emitting diode operating under AC power comprising a substrate; a buffer layer formed on the substrate; and a plurality of light emitting cells formed on the buffer layer to have different sizes and to be electrically isolated from one another, the plurality of light emitting cells being connected in series through metal wires.According to the present invention, light emitting cells formed in an LED have different sizes, and thus have different turn-on voltages when light is emitted under AC power, so that times when the respective light emitting cells start emitting light are different to thereby effectively reduce a flicker phenomenon.
Abstract:
There is provided a light emitting diode operating under AC power comprising a substrate; a buffer layer formed on the substrate; and a plurality of light emitting cells formed on the buffer layer to have different sizes and to be electrically isolated from one another, the plurality of light emitting cells being connected in series through metal wires.According to the present invention, light emitting cells formed in an LED have different sizes, and thus have different turn-on voltages when light is emitted under AC power, so that times when the respective light emitting cells start emitting light are different to thereby effectively reduce a flicker phenomenon.
Abstract:
The present invention discloses a light emitting diode (LED) including a plurality of light emitting cells arranged on a substrate. The LED includes half-wave light emitting units each including at least one light emitting cell, each half-wave light emitting unit including first and second terminals respectively arranged at both ends thereof; and full-wave light emitting units each including at least one light emitting cell, each full-wave light emitting units including third and fourth terminals respectively formed at both ends thereof. The third terminal of each full-wave light emitting unit is electrically connected to the second terminals of two half-wave light emitting units, and the fourth terminal of each full-wave light emitting unit is electrically connected to the first terminals of other two half-wave light emitting units. Also, a first half-wave light emitting unit is connected in series between the third terminal of a first full-wave light emitting unit and the fourth terminal of a second full-wave light emitting units, and a second half-wave light emitting units is connected in series between the fourth terminal of the first full-wave light emitting unit and the third terminal of the second full-wave light emitting unit.
Abstract:
Exemplary embodiments of the present invention relate to light emitting diodes. A light emitting diode according to an exemplary embodiment of the present invention includes a substrate having a first side edge and a second side edge, and a light emitting structure arranged on the substrate. The light emitting structure includes a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A transparent electrode layer including a concave portion and a convex portion is arranged on the second conductivity-type semiconductor layer. A first electrode pad contacts an upper surface of the first conductivity-type semiconductor layer and is located near a center of the first side edge. Two second electrode pads are located near opposite distal ends of the second side edge to supply electric current to the second conductivity-type semiconductor layer. A first pad extension extends from the first electrode pad and a second pad extension extends from each of the two second electrode pads.