摘要:
A method of fabricating and a structure of a merged multi-fin finFET. The method includes forming single-crystal silicon fins from the silicon layer of an SOI substrate having a very thin buried oxide layer and merging the end regions of the fins by growing vertical epitaxial silicon from the substrate and horizontal epitaxial silicon from ends of the fins such that vertical epitaxial silicon growth predominates.
摘要:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
摘要:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (S/D) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a “divided-dose-anneal-in-between” (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
摘要:
A method of forming a self-aligned well implant for a transistor includes forming a patterned gate structure over a substrate, including a gate conductor, a gate dielectric layer and sidewall spacers, the substrate including an undoped semiconductor layer beneath the gate dielectric layer and a doped semiconductor layer beneath the undoped semiconductor layer; removing portions of the undoped semiconductor layer and the doped semiconductor layer left unprotected by the patterned gate structure, wherein a remaining portion of the undoped semiconductor layer beneath the patterned gate structure defines a transistor channel and a remaining portion of the doped semiconductor layer beneath the patterned gate structure defines the self-aligned well implant; and growing a new semiconductor layer at locations corresponding to the removed portions of the undoped semiconductor layer and the doped semiconductor layer, the new semiconductor layer corresponding to source and drain regions of the transistor.
摘要:
A CMOS FinFET device and a method of manufacturing the same using a three dimensional doping process is provided. The method of forming the CMOS FinFET includes forming fins on a first side and a second side of a structure and forming spacers of a dopant material having a first dopant type on the fins on the first side of the structure. The method further includes annealing the dopant material such that the first dopant type diffuses into the fins on the first side of the structure. The method further includes protecting the first dopant type from diffusing into the fins on the second side of the structure during the annealing.
摘要:
Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N−, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P−) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
摘要:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (S/D) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a “divided-dose-anneal-in-between” (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
摘要:
A field effect transistor (FET) comprises a substrate; a buried oxide (BOX) layer over the substrate; a current channel region over the BOX layer; source/drain regions adjacent to the current channel region; a buried high-stress film in the BOX layer and regions of the substrate, wherein the high-stress film comprises any of a compressive film and a tensile film; an insulating layer covering the buried high-stress film; and a gate electrode over the current channel region, wherein the high-stress film is adapted to create mechanical stress in the current channel region, wherein the high-stress film is adapted to stretch the current channel region in order to create the mechanical stress in the current channel region; wherein the mechanical stress comprises any of compressive stress and tensile stress, and wherein the mechanical stress caused by the high-stress film causes an increased charge carrier mobility in the current channel region.
摘要:
A method for achieving uniaxial strain on originally biaxial-strained thin films after uniaxial strain relaxation induced by ion implantation is provided. The biaxial-strained thin film receives ion implantation after being covered by a patterned implant block structure. The strain in the uncovered region is relaxed by ion implantation, which induces the lateral strain relaxation in the covered region. When the implant block structure is narrow (dimension is comparable to the film thickness), the original biaxial strain will relax uniaxially in the lateral direction.
摘要:
A structure and method for making includes adjacent pMOSFET and nMOSFET devices in which the gate stacks are each overlain by a stressing layer that provides compressive stress in the channel of the pMOSFET device and tensile stress in the channel of the nMOSFET device. One of the pMOSFET or nMOSFET device has a height shorter than that of the other adjacent device, and the shorter of the two devices is delineated by a discontinuity or opening in the stressing layer overlying the shorter device. In a preferred method for forming the devices a single stressing layer is formed over gate stacks having different heights to form a first type stress in the substrate under the gate stacks, and forming an opening in the stressing layer at a distance from the shorter gate stack so that a second type stress is formed under the shorter gate stack.