Abstract:
A method and apparatus for increasing the current efficiency of suppressor and suppress-like pretreatment devices is disclosed for the purpose of suppressing a high concentration of eluent without the detrimental effects of excess heat generation. The method and apparatus may be used in ion chromatography.
Abstract:
A method of coating a solid support (e.g. a capillary or chromatography packing) to alter the properties of the support surface for separating components in a fluid stream. The method comprises (a) covalently binding a coupling agent (including functional groups capable of forming free radical sites under hydrogen abstraction conditions) to the support surface in a uniform layer, and (b) thereafter, contacting the bound coupling agent with a solution of preformed polymer comprising totally saturated carbon chain backbones including leaving groups, under hydrogen abstraction conditions of elevated temperature in the presence of a free radical catalyst to remove leaving groups from the carbon chains to form free radical carbon binding sites which covalently bond to the coupling agent layer and to crosslink at least some of the preformed polymer through the free radical carbon binding sites to form a dimensional polymer network coating on said solid support surface. Alternatively, the coating is applied directly to an organic solid support without an intermediate coupling agent.
Abstract:
A chromatographic composition for the selective binding of borate ion comprising support resin particle and polymers containing covalently bonded borate binding carbohydrates wherein said carbohydrates are a mono-, di- or polysaccharide of three to seven alcohol moieties per saccharide unit.
Abstract:
In accordance with the present invention, an ion-exchange composition has been formed which comprises synthetic resin support particles, dispersant capable of suspending the support particles in an aqueous medium to inhibit or prevent agglomeration, and fine synthetic resin layering particles. In a preferred embodiment, the complex can be formed by contacting a suitable dispersant with monomer in an aqueous solution in which the monomer is insoluble. Under suitable conditions for suspension polymerization, the monomer will polymerize to form resin support particles having dispersant irreversibly attached to those particles. The dispersant is irreversibly attached to the synthetic resin support particles, either by covalent bonding or permanent physical entanglement. The dispersant is also attached to the fine layering particles, either by covalent bonding or electrostatic forces. The result is formation of a support particle-dispersant-layering particle complex.
Abstract:
The constituents of a liquid stream are analyzed by flowing the stream through a hollow tube or fiber with spaced protuberances of a character to disrupt laminar flow and to produce turbulence. In one embodiment, the tubing includes ion exchange sites and is preferentially permeable to one of the ions of an electrolyte. In this manner, the tubing is useful as an electrolyte suppressor in ion chromatography in which the analyte ions are separated by chromatography using the electrolyte and the electrolyte is converted to weakly ionized form by passage through the tubing prior to conductivity detection.
Abstract:
Treatment of anion exchange materials containing hydroxyl containing moieties in the beta position relative to the quaternary center in the hydroxide form with glycidol substantially alters the selectivity of the anion exchange material. Furthermore, sequential treatments of first a hydroxide containing solution to put the anion exchange material in the hydroxide form followed by treatment with glycidol in an alternating sequence progressively changes selectivity in a predictable manner allowing facile manipulation of selectivity. Unique to the selectivities achievable with this chemistry is the ability to reverse the elution order of sulfate and carbonate. With all other known systems, carbonate elutes ahead of sulfate and sometimes compromises the ability to quantitate sulfate. With glycidol treatment, carbonate can be moved after sulfate which eliminates interference issues for samples containing significantly more carbonate than sulfate. This modification is useful for columns operated with a hydroxide or carbonate eluent system.
Abstract:
This invention provides mixed-mode stationary phase compositions, devices and systems comprising the stationary phases as well as methods of producing these compositions using epoxide ring-opening reactions. Also provided are methods of using the stationary phases of the invention in separations.
Abstract:
An ion chromatography housing for easy insertion and removal of a plurality of component cartridges is disclosed. Various components of the IC system are provided in the separate component cartridges. The IC housing includes a capillary separation column and may be connected to conventional-scale components of an IC system. A plurality of IC housings may be provided in a compartment with one or more separation columns. The columns may be capillary columns or conventional-scale columns. A method of using the ion chromatography system is also disclosed. The IC system may be utilized to perform two-dimensional ion chromatographic separation.
Abstract:
A system and method to generate a concentration gradient eluent flow are described. The concentration gradient eluent flow can include at least two different generants. A liquid can be pumped to an eluent generating device. A first controlling signal can be applied to a first eluent generator to generate a first generant. A second controlling signal can be applied to a second eluent generator to generate a second generant. Either the first and/or the second controlling signal can be varied as a function of time to generate the concentration gradient eluent flow.
Abstract:
A surrogate addition device is described that adds a surrogate compound at a uniform transport rate to a flowing sample stream. The surrogate addition device includes a surrogate reservoir, a flow chamber, and a diffusion barrier. The surrogate reservoir can be configured to contain a surrogate solution where the surrogate solution includes a surrogate compound. The flow chamber includes an inlet port and an outlet port. At least a portion of the diffusion barrier is disposed in between the surrogate reservoir and the flow chamber. The diffusion barrier may include an inner surface that forms a wall of the surrogate reservoir, and an outer surface that forms a wall of the flow chamber. The flow chamber can be configured to receive a flowing sample solution across the outer surface of the diffusion barrier and also to diffuse the surrogate compound from the surrogate reservoir to the flow chamber.