摘要:
Methods of patterning low-k dielectric films are described. For example, a method includes forming and patterning a mask layer above a low-k dielectric layer, the low-k dielectric layer disposed above a substrate. Exposed portions of the low-k dielectric layer are modified with a plasma process. The modified portions of the low-k dielectric layer are removed selective to the mask layer and unmodified portions of the low-k dielectric layer.
摘要:
A memory cell comprises a p-doped substrate with a pair of spaced apart n-doped regions on the substrate that form a source and drain about the channel. A stack of layers on the channel comprises, in sequence, (i) a tunnel oxide layer, (ii) a floating gate, (iii) an inter-gate dielectric, and (iv) a control gate. A polysilicon layer is on the source and drain. A cover layer covering the stack of layers comprises a spacer layer and a pre-metal-deposition layer. Optionally, contacts are used to contact each of the source, drain, and silicide layers, and each have exposed portions. A shallow isolation trench is provided about n-doped regions, the trench comprising a stressed silicon oxide layer having a tensile stress of at least about 200 MPa. The stressed layer reduces leakage of charge held in the floating gate during operation of the memory cell.
摘要:
A showerhead adapted for distributing gases into a process chamber and a method for forming dielectric layers on a substrate are generally provided. In one embodiment, a showerhead for distributing gases in a processing chamber includes an annular body coupled between a disk and a mounting flange. The disk has a plurality of holes formed therethrough. A lip extends from a side of the disk opposite the annular body and away from the mounting flange. The showerhead may be used for the deposition of dielectric materials on a substrate. In one embodiment, silicon nitride and silicon oxide layers are formed on the substrate without removing the substrate from a processing chamber utilizing the showerhead of the present invention.
摘要:
Methods to reduce film cracking in a dielectric layer are described. The methods may include the steps of depositing a first dielectric film on a substrate and removing a top portion of the first dielectric film by performing an etch on the film. The methods may also include depositing a second dielectric film over the etched first film, and removing a top portion of the second dielectric film. In addition, the methods may include annealing the first and second dielectric films to form the dielectric layer, where the removal of the top portions from the first and the second dielectric films reduces a stress level in the dielectric layer.
摘要:
A method of depositing a silicon and nitrogen containing film on a substrate. The method includes introducing silicon-containing precursor to a deposition chamber that contains the substrate, wherein the silicon-containing precursor comprises at least two silicon atoms. The method further includes generating at least one radical nitrogen precursor with a remote plasma system located outside the deposition chamber. Moreover, the method includes introducing the radical nitrogen precursor to the deposition chamber, wherein the radical nitrogen and silicon-containing precursors react and deposit the silicon and nitrogen containing film on the substrate. Furthermore, the method includes annealing the silicon and nitrogen containing film in a steam environment to form a silicon oxide film, wherein the steam environment includes water and acidic vapor.
摘要:
A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a radiative heating system to heat the substrate that includes at least one light source, where at least some of the light emitted from the light source travels through the top side of the deposition chamber before reaching the substrate. The system may also include a precursor distribution system to introduce the reactive radical precursor and additional dielectric precursors to the deposition chamber. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
摘要:
A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a precursor distribution system comprising a dual-channel showerhead positioned above the substrate stage. The showerhead may have a faceplate with a first set of openings through which the reactive radical precursor enters the deposition chamber, and a second set of openings through which a second dielectric precursor enters the deposition chamber. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
摘要:
A chemical vapor deposition method for forming a dielectric material in a trench formed on a substrate, where the method includes the steps of generating water vapor by contacting hydrogen gas and oxygen gas with a water vapor generation catalyst, and providing the water vapor to the process chamber. The method also includes flowing a silicon-containing precursor into the process chamber housing the substrate, flowing an oxidizing gas into the chamber, and causing a reaction between the silicon-containing precursor, the oxidizing gas and the water vapor to form the dielectric material in the trench. The method may also include increasing over time a ratio of the silicon-containing precursor to the oxidizing gas flowed into the chamber to alter a rate of deposition of the dielectric material.
摘要:
A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
摘要:
A substrate processing system has a housing that defines a process chamber. A substrate holder is disposed within the process chamber and configured to support a substrate within a substrate plane during substrate processing. A gas-delivery system is configured to introduce a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density-plasma generating system is operatively coupled with the process chamber. A magnetic confinement ring with magnetic dipoles is disposed circumferentially around a symmetry axis orthogonal to the substrate plane and provides a magnetic field with a net dipole moment substantially nonparallel with the substrate plane. A controller controls the gas-delivery system, the pressure-control system, and the high-density plasma system.