摘要:
A chromeless phase shift mask and Method for making and using. The A chromeless phase shift mask is used to pattern contact holes. The chromeless phase shift mask preferably comprises: a first phase shift region and a second phase shift region; the first region is comprised of a unit cell which is comprised of a rectangular center section and at least three rectangular sections (legs) outwards extending from the rectangular center section. The second region is adjacent to said first region. The interference between the first and second phase shift regions creates a contact hole pattern.
摘要:
A method of filling gaps in dielectric layers is disclosed. A wafer is provided having a dielectric layer containing gaps to be filled with copper, some of the gaps, denoted deeper gaps, having aspect ratios so large that filling these gaps with copper using ECP could result in pinhole like voids. A blanket conformal metal barrier layer is formed and the wafer is then submerged in a solution to electroless plate a blanket conformal copper seed layer. A partial filling of deeper gaps with copper reduces the effective aspect ratios of the deeper gaps to the extent that ECP could be used to complete the copper filling of the gaps without forming pinhole like voids. ECP is then used to complete the copper filling of the gaps. The wafer is annealed and CMP performed to planarize the surface, giving rise to a structure in which the gaps are filled with copper and are separated by the dielectric layer.
摘要:
Test structures including test trenches are used to define critical dimension of trenches in a via level of an integrated circuit to produce substantially the same depth. The trenches are formed at the periphery of the IC to serve as guard rings.
摘要:
A method for fabricating a nitrogen-containing dielectric layer and semiconductor device including the dielectric layer in which a silicon oxide layer is formed on a substrate, such that an interface region resides adjacent to substrate and a surface region resides opposite the interface region. Nitrogen is introduced into the silicon oxide layer by applying a nitrogen plasma. After applying nitrogen plasma, the silicon oxide layer is annealed. The processes of introducing nitrogen into the silicon oxide layer and annealing the silicon oxide layer are repeated to create a bi-modal nitrogen concentration profile in the silicon oxide layer. In the silicon oxide layer, the peak nitrogen concentrations are situated away from the interface region and at least one of the peak nitrogen concentrations is situated in proximity to the surface region. A method for fabricating a semiconductor device is incorporating the nitrogen-containing silicon oxide layers also disclosed.
摘要:
An example process to remove spacers from the gate of a NMOS transistor. A stress creating layer is formed over the NMOS and PMOS transistors and the substrate. In an embodiment, the spacers on gate are removed so that stress layer is closer to the channel of the device. The stress creating layer is preferably a tensile nitride layer. The stress creating layer is preferably a contact etch stop liner layer. In an embodiment, the gates, source and drain region have an silicide layer thereover before the stress creating layer is formed. The embodiment improves the performance of the NMOS transistors.
摘要:
A method of fabricating a semiconductor substrate includes forming a buffer layer on the substrate. A Ge containing layer, such as a SiGe is formed over the buffer layer. The buffer layer includes defects at the interface of the substrate and buffer layer. The substrate is oxidized to transform the buffer layer to a buried oxide layer.
摘要:
A method for forming a semiconductor structure having devices formed on both sides. A first substrate and a second substrate are provided. The first substrate is preferably comprised of Ge. The second substrate is preferably comprised of silicon. We form a first dielectric layer over the first substrate. We form a first insulating layer over the second substrate. We bond the first dielectric layer and the first dielectric layer to form a first structure. The first structure comprised of the first substrate, an insulation layer (combined first dielectric and first insulating layers) and the second substrate. We reduce the thickness of the first substrate. We form via plugs through the first substrate and the insulation layer and at least partially through the second substrate. We form first active devices on the surface of the first substrate. We form a first capping layer over the first active devices and the first substrate. We reduce the thickness of the second substrate to expose the via plugs. We form second active devices on the second substrate.
摘要:
A method of forming a relaxed silicon—germanium layer for use as an underlying layer for a subsequent overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon—germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon—germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon—germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon—germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon—germanium layer progresses. In situ growth of an overlying silicon—germanium layer featuring uniform or non—graded germanium content, results in a relaxed silicon—germanium layer with a minimum of dislocations propagating from the underlying graded silicon—germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.