Abstract:
In one aspect, the invention provides curable fluoropolymer compositions comprising fluoropolymer, onium, and alkyl or aryl oxalate-blocked compound and carbonate-blocked compound as crosslinking agents. In other aspects, the invention provides methods of making curable fluoropolymer compositions and provides alkyl or aryl oxalate-blocked and carbonate-blocked compounds.
Abstract:
The present invention provides a non-film-forming latex of dispersed particles which may be used in an electrophoretic display, comprising: a) a highly fluorinated liquid solvent, and b) dispersed particles comprising a polymer comprising units according to formula I: wherein each (fcp) is independently selected from highly fluorinated polymer chains and each Q is independently selected from —H and straight or branched non-fluorinated polymer chains (hcp). Latexes of dispersed particles having a very small particle size are especially provided.
Abstract:
The present invention provides a two-step method of making a latex in a highly fluorinated liquid solvent, including a first step of polymerizing together a mixture of: i) 1-2 parts by weight of one or more non-fluorinated free-radically-polymerizable monomers, and ii) 1-9 parts by weight of one or more highly fluorinated macromers terminated at one or more sites with free-radically-polymerizable groups to form a dispersion of seed particles; and a second step of polymerizing together said seed particles with an additional 10-1,000 percent by weight, relative to the total weight of the seed particles, of one or more non-fluorinated free-radically-polymerizable monomers. The present invention additionally provides a fine latex comprising a highly fluorinated liquid solvent and dispersed particles having an average particle size of 250 nm or less and more preferably 200 nm or less. The latexes of the present invention may be useful in an electrophoretic display.
Abstract:
This invention provides a curable fluoroelastomer composition comprising: (A) a fluorine-containing polymer or a blend of fluorine-containing polymers each comprising interpolymerized units derived from one or more fluorine-containing ethylenically unsaturated monomers; (B) an aromatic polyhydroxy crosslinking agent; (C) at least one organo-onium compound; and (D) a monohydroxyfunctional phenol. The compositions provide for a method of improving scorch safety of curable fluoroelastomer compositions.
Abstract:
Surface-structured, cross-linked silicone-based material and method for making the same. Embodiments of silicone-based materials described herein are useful, for example, in applications of light capture, anti-reflection, light redirection, light diffusion, hydrophobic surfaces, hydrophilic surfaces, light guiding, light collimation, light concentration, Fresnel lens, retro-reflection, drag reduction, air bleed adhesives, release liner, abrasion resistance, and anti-fouling.
Abstract:
The disclosure provides polymers having antimicrobial activity and articles with the polymers coated thereon. The polymers include a first pendant group comprising a first cationic component, a second pendant group comprising a nonpolar component, and a third pendant group comprising an organosilane component. The disclosure also includes methods of coating medical device articles and body fluid-receiving substrates with the antimicrobial polymers. The methods further include the use of adhesion-promoting components.
Abstract:
The invention features an article comprising a reactive substrate that forms a covalent or hydrogen bond with a surface layer. The surface layer of the article comprises the reaction product of at least one monoterminated (per)fluoropolyether (meth)acryl compound and at least one monomer or oligomer having at least two (meth)acryl groups.
Abstract:
Compositions include a polymer and silica nanoparticles dispersed in an aqueous continuous liquid phase. The polymer is a water-soluble copolymer of acrylic acid and an acrylamide, or a salt of the same. Methods of making and using the compositions to coat a substrate are also disclosed.
Abstract:
Compositions include an aqueous continuous liquid phase and core-shell particles dispersed in the aqueous continuous liquid phase. Each core-shell particle includes a polymer core surrounded by a shell consisting essentially of nonporous spherical silica particles disposed on the polymer core, wherein the nonporous spherical silica particles have a volume average particle diameter of 60 nanometers or less. Methods of making and using the compositions to coat a substrate are also disclosed.
Abstract:
The present application is directed to a method of making an article. The method comprises coating a composition to a surface of a substrate. The coating composition comprises an aqueous continuous liquid phase, a silica nano-particle dispersed in the aqueous continuous liquid phase, and a polymer latex dispersion. The coated substrate is then heated to at least 300° C.