摘要:
An asymmetric twin waveguide (ATG) structure is disclosed that significantly reduces the negative effects of inter-modal interference in symmetric twin-waveguide structures and which can be effectively used to implement a variety of optical devices. The ATG structure of the invention can be monolithically fabricated on a single epitaxial structure without the necessity of epitaxial re-growth. To achieve the ATG structure of the invention, the effective index of the passive waveguide in the ATG is varied from that of a symmetric twin waveguide such that one mode of the even and odd modes of propagation is primarily confined to the passive waveguide and the other to the active waveguide. The different effective indices of the two coupled waveguides result in the even and odd modes becoming highly asymmetric. As a result, the mode with the larger confinement factor in the active waveguide experiences higher gain and becomes dominant. In a further embodiment, the active waveguide is tapered to reduce coupling losses of the optical energy between the passive waveguide and the active waveguide. In a further embodiment, a grating region is incorporated atop the passive waveguide to select certain frequencies for transmission of light through the passive waveguide.
摘要:
A method of depositing organic material is provided. A carrier gas carrying an organic material is ejected from a nozzle at a flow velocity that is at least 10% of the thermal velocity of the carrier gas, such that the organic material is deposited onto a substrate. In some embodiments, the dynamic pressure in a region between the nozzle and the substrate surrounding the carrier gas is at least 1 Torr, and more preferably 10 Torr, during the ejection. In some embodiments, a guard flow is provided around the carrier gas. In some embodiments, the background pressure is at least about 10e-3 Torr, more preferably about 0.1 Torr, more preferably about 1 Torr, more preferably about 10 Torr, more preferably about 100 Torr, and most preferably about 760 Torr. A device is also provided. The device includes a nozzle, which further includes a nozzle tube having a first exhaust aperture and a first gas inlet; and a jacket surrounding the nozzle tube, the jacket having a second exhaust aperture and a second gas inlet. The second exhaust aperture completely surrounds the first tube aperture. A carrier gas source and an organic source vessel may be connected to the first gas inlet. A guard flow gas source may be connected to the second gas inlet. The device may include an array of such nozzles.
摘要:
An organic light emitting device (OLED) is disclosed for which the hole transporting layer, the electron transporting layer and/or the emissive layer, if separately present, is comprised of a non-polymeric material. A method for preparing such OLED's using vacuum deposition techniques is further disclosed.
摘要:
A donor/acceptor-organic-junction sheet employed within an electronic memory array of a cross-point diode memory. The donor/acceptor-organic-junction sheet is anistropic with respect to flow of electrical current and is physically unstable above a threshold current. Thus, the volume of the donor/acceptor-organic-junction sheet between a row line and column line at a two-dimensional memory array grid point serves both as the diode component and as the fuse component of a diode-and-fuse memory element and is electrically insulated from similar volumes of the donor/acceptor-organic-junction sheet between neighboring grid point intersections.
摘要:
The present invention provides a method of manufacturing VCSELs which involves a flip-bonding process wherein the top surface of the VCSEL wafer is bonded face down onto a surrogate substrate. The process begins in a manner similar to traditional double dielectric stack based VCSEL, but then involves flip-bonding the wafer onto an In or Ag epoxy coated surrogate substrate. The InP substrate is then selectively etched. After flip-bonding the wafer fabrication proceeds on the freshly etched surface which now forms the top surface. Next, standard mesa-isolation and contact formation techniques are performed on this newly etched surface.
摘要:
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standard OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.
摘要:
An elastomeric stamp is used to deposit material on a non-planar substrate. A vacuum mold is used to deform the elastomeric stamp and pressure is applied to transfer material from the stamp to the substrate. By decreasing the vacuum applied by the vacuum mold, the elasticity of the stamp may be used to apply this pressure. Pressure also may be applied by applying a force to the substrate and/or the stamp. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer.
摘要:
A microfluidic device for use with a microfluidic delivery system, such as an organic vapor jet printing device, includes a glass layer that is directly bonded to a microfabricated die and a metal plate via a double anodic bond. The double anodic bond is formed by forming a first anodic bond at an interface of the microfabricated die and the glass layer, and forming a second anodic bond at an interface of the metal plate and the glass layer, where the second anodic bond is formed using a voltage that is lower than the voltage used to form the first anodic bond. The second anodic bond is formed with the polarity of the voltage reversed with respect to the glass layer and the formation of the first anodic bond. The metal plate includes attachment features that allow removal of the microfluidic device from a fixture.
摘要:
A method of fabricating an optoelectronic device includes creating an optoelectronic structure on a first substrate. The optoelectronic structure includes a release layer and a plurality of inorganic semiconductor layers supported by the release layer. The plurality of inorganic semiconductor layers is configured to be active in operation of the optoelectronic device. The plurality of inorganic semiconductor layers are permanently attached to a second substrate, which is flexible. The plurality of inorganic semiconductor layers are released from the first substrate after the attaching step, and the second substrate is deformed to a non-planar configuration.
摘要:
Disclosed herein is a method of fabricating an antenna in which a flexible stamp is formed from a first wafer, the first wafer transferring a pattern to the flexible stamp, in which an antenna substrate is shaped into a three-dimensional contour with a second mold, in which the flexible stamp is positioned in the second mold to deform the flexible stamp into the three-dimensional contour, and in which a metallic layer on the flexible stamp is cold welded to create a set of antenna traces on the antenna substrate in accordance with the pattern. The antenna traces may then be electroplated.