Optical Device With A Graded Bandgap Structure And Methods Of Making And Using The Same
    72.
    发明申请
    Optical Device With A Graded Bandgap Structure And Methods Of Making And Using The Same 有权
    具有分级带隙结构的光学装置及其制造和使用方法

    公开(公告)号:US20090257703A1

    公开(公告)日:2009-10-15

    申请号:US12262394

    申请日:2008-10-31

    摘要: An optical device includes at least two materials forming a structure with a graded bandgap where photocarriers are generated. A first of the at least two materials has a larger concentration at opposed ends of the graded bandgap structure than a concentration of the first of the at least two materials at an interior region of the graded bandgap structure. The second of the at least two materials has a larger concentration at the interior region of the graded bandgap structure than the concentration of the second of the at least two materials at the opposed ends of the graded bandgap structure.

    摘要翻译: 光学装置包括至少两种材料,其形成具有产生光载流子的渐变带隙的结构。 所述至少两种材料中的第一种在分级带隙结构的相对端具有比在渐变带隙结构的内部区域处的至少两种材料中的第一种的浓度更大的浓度。 所述至少两种材料中的第二种在梯度带隙结构的内部区域具有比在渐变带隙结构的相对端处的至少两种材料中的第二种材料的浓度更大的浓度。

    Nanowire heterostructures and methods of forming the same
    73.
    发明授权
    Nanowire heterostructures and methods of forming the same 有权
    纳米线异质结构及其形成方法

    公开(公告)号:US07570355B2

    公开(公告)日:2009-08-04

    申请号:US11341705

    申请日:2006-01-27

    IPC分类号: G01J3/44 G01N21/65

    摘要: A NERS-active structure is disclosed that includes at least one heterostructure nanowire. The at least one heterostructure nanowire may include alternating segments of an NERS-inactive material and a NERS-active material in an axial direction. Alternatively, the alternating segments may be of an NERS-inactive material and a material capable of attracting nanoparticles of a NERS-active material. In yet another alternative, the heterostructure nanowire may include a core with alternating coatings of an NERS-inactive material and a NERS-active material in a radial direction. A NERS system is also disclosed that includes a NERS-active structure. Also disclosed are methods for forming a NERS-active structure and methods for performing NERS with NERS-active structures.

    摘要翻译: 公开了包含至少一个异质结构纳米线的NERS活性结构。 所述至少一个异质结构纳米线可以包括在轴向上的NERS非活性材料和NERS-活性材料的交替的段。 或者,交替的区段可以是NERS-非活性材料和能够吸引NERS-活性材料的纳米颗粒的材料。 在另一个替代方案中,异质结构纳米线可以包括在径向方向上具有NERS非活性材料和NERS-活性材料的交替涂层的芯。 还公开了包括NERS-活性结构的NERS系统。 还公开了形成NERS-活性结构的方法和用NERS-活性结构进行NERS的方法。

    Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
    75.
    发明申请
    Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same 有权
    纳米线被配置为将电磁辐射耦合到所选择的导波,使用其的装置及其制造方法

    公开(公告)号:US20080266556A1

    公开(公告)日:2008-10-30

    申请号:US11796011

    申请日:2007-04-25

    IPC分类号: G01J3/44 G02B6/26 B05D5/06

    摘要: Various aspects of the present invention are directed to a nanowire configured to couple electromagnetic radiation to a selected guided wave and devices incorporating such nanowires. In one aspect of the present invention, a nanowire structure includes a substrate and at least one nanowire attached to the substrate. A diameter, composition, or both may vary generally periodically along a length of the at least one nanowire. A coating may cover at least part of a circumferential surface of the at least one nanowire. The nanowire structure may be incorporated in a device including at least one optical-to-electrical converter operable to convert a guided wave propagating along the length of the at least one nanowire, at least in part responsive to irradiation, to an electrical signal. Other aspects of the present invention are directed to methods of fabricating nanowires structured to support guided waves.

    摘要翻译: 本发明的各个方面涉及配置成将电磁辐射耦合到选定的导波的纳米线和结合这样的纳米线的装置。 在本发明的一个方面,纳米线结构包括底物和附着在基底上的至少一个纳米线。 直径,组成或两者可以沿着至少一个纳米线的长度大致周期性地变化。 涂层可以覆盖至少一个纳米线的周向表面的至少一部分。 纳米线结构可以结合在包括至少一个光电转换器的器件中,该至少一个光电转换器可操作以将至少部分地响应于辐射的至少一个纳米线的长度传播的导波转换成电信号。 本发明的其它方面涉及制造用于支撑导波的纳米线的制造方法。

    Interconnection between different circuit types
    77.
    发明申请
    Interconnection between different circuit types 失效
    不同电路类型之间的互连

    公开(公告)号:US20080087998A1

    公开(公告)日:2008-04-17

    申请号:US11548994

    申请日:2006-10-12

    IPC分类号: H01L23/02 H01L21/00

    摘要: A hybrid-scale electronic circuit, an internal electrical connection and a method of electrically interconnecting employ an interconnect having a tapered shape to electrically connect between different-scale circuits. The interconnect has a first end with an end dimension that is larger than an end dimension of an opposite, second end of the interconnect. The larger first end of the interconnect connects to an electrical contact of a micro-scale circuit and the second end of the interconnect connects to an electrical contact of a nano-scale circuit.

    摘要翻译: 混合比例电子电路,内部电连接和电互连的方法采用具有锥形形状的互连以在不同尺度的电路之间电连接。 互连具有第一端,端部尺寸大于互连的相对的第二端的端部尺寸。 互连的较大的第一端连接到微尺度电路的电接触,并且互连的第二端连接到纳米级电路的电接触。

    Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices
    78.
    发明授权
    Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices 失效
    形成用于分子电子器件的光滑多晶硅电极的方法

    公开(公告)号:US07190075B2

    公开(公告)日:2007-03-13

    申请号:US11127917

    申请日:2005-05-11

    IPC分类号: H01L23/48

    摘要: A method is provided for forming smooth polycrystalline silicon electrodes for molecular electronic devices. The method comprises: depositing a silicon layer in an amorphous form; forming a native oxide on a surface of the amorphous silicon layer at a temperature between room temperature to 500° C.; and converting the amorphous silicon to polycrystalline silicon by heat-treating at a temperature in a range of 600° to 800° C. for a period of time in a range of 1 minute to 24 hrs, with higher temperatures associated with shorter times, in an inert atmosphere. The method converts the amorphous form of silicon to the higher conductivity polycrystalline form, while retaining the smoothness associated with the amorphous form.

    摘要翻译: 提供了一种形成用于分子电子器件的平滑多晶硅电极的方法。 该方法包括:沉积非晶形式的硅层; 在室温至500℃的温度下在非晶硅层的表面上形成天然氧化物; 在600〜800℃的温度范围内,在1分钟〜24小时的范围内进行热处理,将该非晶硅转化为多晶硅,在较短的时间内与较高的温度相比,在 惰性气氛。 该方法将无定形形式的硅转化为较高电导率的多晶形式,同时保持与无定形形式相关的平滑度。

    Nanowire, circuit incorporating nanowire, and methods of selecting conductance of the nanowire and configuring the circuit
    79.
    发明授权
    Nanowire, circuit incorporating nanowire, and methods of selecting conductance of the nanowire and configuring the circuit 失效
    纳米线,并入纳米线的电路,以及选择纳米线的电导和配置电路的方法

    公开(公告)号:US07087920B1

    公开(公告)日:2006-08-08

    申请号:US11038644

    申请日:2005-01-21

    IPC分类号: H01L29/02

    摘要: A nanowire includes a single crystalline semiconductor material having an exterior surface and an interior region and at least one dopant atom. At least a portion of the nanowire thermally switches between two conductance states; a high conductance state, where a high fraction of the dopant atoms is in the interior region, and a low conductance state, where a lower fraction of the dopant atoms is at the interior region and a higher fraction of the atoms is at the exterior surface. A method to select the conductance of the nanowire increases a temperature of the nanowire at least in a local region to a programming temperature to thermally activate diffusion of a dopant atom into a bulk region of the single crystalline semiconductor material and decreases the temperature of the nanowire at least in the local region to a second temperature to immobilize dopant atoms in the bulk region, the second temperature being below the programming temperature, wherein immobilized dopant atoms in the bulk region produce a desired high or low conductance state in the nanowire. The method can be used to initially configure and to reconfigure a circuit incorporating the nanowire.

    摘要翻译: 纳米线包括具有外表面和内部区域以及至少一个掺杂剂原子的单晶半导体材料。 纳米线的至少一部分在两个电导状态之间热切换; 高电导状态,其中高分子量的掺杂剂原子在内部区域,并且低电导状态,其中掺杂剂原子的较低部分在内部区域,较高部分的原子位于外部表面 。 选择纳米线的电导的方法至少在局部区域将纳米线的温度增加到编程温度,以热激活掺杂剂原子扩散到单晶半导体材料的主体区域并降低纳米线的温度 至少在局部区域到第二温度以固定化区域中的掺杂剂原子,第二温度低于编程温度,其中本体区域中固定的掺杂剂原子在纳米线中产生期望的高或低导电状态。 该方法可用于初始配置和重新配置纳入纳米线的电路。