摘要:
An optical apparatus includes a waveguide configured to propagate optical energy; an electrical contact surface; and a semiconductor electrical interconnect extending from a first surface of the optical waveguide to electrical communication with the electrical contact surface. The semiconductor electrical interconnect comprises a geometry configured to substantially confine the optical energy to the waveguide.
摘要:
An optical device includes at least two materials forming a structure with a graded bandgap where photocarriers are generated. A first of the at least two materials has a larger concentration at opposed ends of the graded bandgap structure than a concentration of the first of the at least two materials at an interior region of the graded bandgap structure. The second of the at least two materials has a larger concentration at the interior region of the graded bandgap structure than the concentration of the second of the at least two materials at the opposed ends of the graded bandgap structure.
摘要:
A NERS-active structure is disclosed that includes at least one heterostructure nanowire. The at least one heterostructure nanowire may include alternating segments of an NERS-inactive material and a NERS-active material in an axial direction. Alternatively, the alternating segments may be of an NERS-inactive material and a material capable of attracting nanoparticles of a NERS-active material. In yet another alternative, the heterostructure nanowire may include a core with alternating coatings of an NERS-inactive material and a NERS-active material in a radial direction. A NERS system is also disclosed that includes a NERS-active structure. Also disclosed are methods for forming a NERS-active structure and methods for performing NERS with NERS-active structures.
摘要:
A photonic connection includes a first fiber and a second fiber. The first fiber has a core with a first predetermined pattern defined on or in a facet thereof, and the second fiber has a core with a second predetermined pattern defined on or in a facet thereof. The second predetermined pattern is complementary to the first predetermined pattern such that the first fiber or the second fiber fits into another of the second fiber or the first fiber at a single orientation and position.
摘要:
Various aspects of the present invention are directed to a nanowire configured to couple electromagnetic radiation to a selected guided wave and devices incorporating such nanowires. In one aspect of the present invention, a nanowire structure includes a substrate and at least one nanowire attached to the substrate. A diameter, composition, or both may vary generally periodically along a length of the at least one nanowire. A coating may cover at least part of a circumferential surface of the at least one nanowire. The nanowire structure may be incorporated in a device including at least one optical-to-electrical converter operable to convert a guided wave propagating along the length of the at least one nanowire, at least in part responsive to irradiation, to an electrical signal. Other aspects of the present invention are directed to methods of fabricating nanowires structured to support guided waves.
摘要:
Methods of creating isolated electrodes and integrating a nanowire therebetween each employ lateral epitaxial overgrowth of a semiconductor material on a semiconductor layer to form isolated electrodes having the same crystal orientation. The methods include selective epitaxial growth of a semiconductor feature through a window in an insulating film on the semiconductor layer. A vertical stem is in contact with the semiconductor layer through the window and a ledge is a lateral epitaxial overgrowth of the vertical stem on the insulating film. The methods further include creating a pair of isolated electrodes from the semiconductor feature and the semiconductor layer. A nanowire-based device includes the pair of isolated electrodes and a nanowire bridging between respective surfaces of the isolated electrodes of the pair.
摘要:
A hybrid-scale electronic circuit, an internal electrical connection and a method of electrically interconnecting employ an interconnect having a tapered shape to electrically connect between different-scale circuits. The interconnect has a first end with an end dimension that is larger than an end dimension of an opposite, second end of the interconnect. The larger first end of the interconnect connects to an electrical contact of a micro-scale circuit and the second end of the interconnect connects to an electrical contact of a nano-scale circuit.
摘要:
A method is provided for forming smooth polycrystalline silicon electrodes for molecular electronic devices. The method comprises: depositing a silicon layer in an amorphous form; forming a native oxide on a surface of the amorphous silicon layer at a temperature between room temperature to 500° C.; and converting the amorphous silicon to polycrystalline silicon by heat-treating at a temperature in a range of 600° to 800° C. for a period of time in a range of 1 minute to 24 hrs, with higher temperatures associated with shorter times, in an inert atmosphere. The method converts the amorphous form of silicon to the higher conductivity polycrystalline form, while retaining the smoothness associated with the amorphous form.
摘要:
A nanowire includes a single crystalline semiconductor material having an exterior surface and an interior region and at least one dopant atom. At least a portion of the nanowire thermally switches between two conductance states; a high conductance state, where a high fraction of the dopant atoms is in the interior region, and a low conductance state, where a lower fraction of the dopant atoms is at the interior region and a higher fraction of the atoms is at the exterior surface. A method to select the conductance of the nanowire increases a temperature of the nanowire at least in a local region to a programming temperature to thermally activate diffusion of a dopant atom into a bulk region of the single crystalline semiconductor material and decreases the temperature of the nanowire at least in the local region to a second temperature to immobilize dopant atoms in the bulk region, the second temperature being below the programming temperature, wherein immobilized dopant atoms in the bulk region produce a desired high or low conductance state in the nanowire. The method can be used to initially configure and to reconfigure a circuit incorporating the nanowire.
摘要:
A method of forming a single crystal semiconductor film on a non-crystalline surface is described. In accordance with this method, a template layer incorporating an ordered array of nucleation sites is deposited on the non-crystalline surface, and the single crystal semiconductor film is formed on the non-crystalline surface from the ordered array of nucleation sites. An integrated circuit incorporating one or more single crystal semiconductor layers formed by this method also is described.